

IR Requirements

- Optics requirements
 - At IP, zero D_x , D'_x , α , specified β
 - Note beams are fairly flat at IP: $\beta_x \approx 10 \beta_y$
 - Optics for crab cavities
 - 25 mrad crossing angle
 - High β_x at crab
 - 1300 m for 275 GeV protons
 - 150 m for 18 GeV electrons
 - $n\pi + \pi/2$ horizontal phase advance from IP
 - Betatron match to arcs
 - ESR: phase advance to arcs (chromatic β , dynamic aperture)

IR Requirements

- Detector requirements
 - 4.5 m rear, 5.0 m forward stay-clear
 - First forward hadron magnet is a dipole with an integrated spectrometer
 - Apertures pass particles to far-forward detectors (hadron)
 - 4 mrad neutrals
 - 1.3 GeV/c transverse momentum protons (for 275 GeV)
 - Space for far-forward detectors
 - Electron rear, dipole following doublet
 - Bend electrons away from photons (luminosity)
 - Space for low-Q² taggers

IR Requirements

- Minimize stray field from HSR on ESR (avoid synchrotron radiation and nonlinear fields in ESR)
 - Difficulty: cannot shield spectrometer dipole from far field of ESR final focus quadrupole inside of it
- Spin manipulation
 - HSR: snake (helical dipole) at a specific geometric angle
 - HSR: rotators (helical dipole), one on each side of the IP
 - ESR: solenoid spin rotators for 6–18 GeV
- HSR: use existing RHIC magnets as much as possible

HSR IR Forward Layout

- Magnets aligned to transmit particles required for far-forward detectors
- Spectrometer dipole field same for all energies
 - Following dipoles restore orbit
- Shared ESR/HSR yokes
 - ESR quadrupole inside HSR dipole
- Downstream aperture dominated by
 - $p_T < 1.3 \text{ GeV/}c$
 - 4 mrad neutrals
- Orient HSR magnets to maximize distance to ESR

Spectrometer Dipole

- ESR quad inside spectrometer dipole
- Gradient on dipole to zero field at ESR
- ESR quad gives stray field on HSR

HSR Optics

- Doublet focusing near IR, vertical focus first
- Dipoles near IR on forward side create dispersion amplitude
- β_x remains high to crab
 - Horizontal phase to crab naturally close to $\pi/2$
- Outside crabs, reduce β_x as gently as possible (chromaticity)
- Match RHIC arcs

HSR Optics

- Match using mostly RHIC magnets
- IP 81 cm inside RHIC IP, tilted
- Snake angle specified
- Two rotators, IP side of snake, ideally parallel
- IP to crab space: detectors
- Space very constrained

HSR Optics

- Two large-aperture high-field dipoles
 - One is near crab (aperture)
- Large-aperture iron quad on IP side of crab
- Re-cryostated RHIC IR quads (arc side of crab)

Crabbing Closure

- Phase advance between crabs 5° short of 180°. Leaves residual crabbing around the ring.
- Difficult/expensive to close in IR6
 - Almost no space available
 - Match heavily constrained
 - Could consider significant re-design of near IR
 - Could close with combination of IR6/IR8
 - Some ideas for using dispersion at accelerating at RF cavities to close, but lattice functions don't look favorable
- Ongoing studies will determine whether closure is necessary

ESR Rear IR layout

- Dipole to separate beam from photons
- Photons used for luminosity monitoring
- Taggers for low- Q^2 electrons
- ESR magnets share yoke with HSR magnets

ESR Optics

- Doublet focusing near IR, vertical focus first
- Dipole in IR rear creates dispersion amplitude
- Horizontal phase of 2π between crabs
 - Phase to forward crab just above $\pi/2$
 - If $\pi/2$, β_x too high (transverse collective)
 - Rear crab far away to get $\approx 3\pi/2$
 - Polarimeter on forward side
- β_x forward stays above crab β_x
- Just outside crabs, reduce β_{χ} gently (chromaticity)

ESR Optics

- Match very constrained, mainly by dispersion, especially rear
 - Zero dispersion at spin rotators
 - Horizontal phase advance constraint to crab
 - Geometric match forces (mostly) dipole layout
- Beta functions need to be raised for rear crab
 - Significant horizontal chromaticity generated near rear crab

ESR Spin Rotation

- Use solenoid modules to rotate spin from vertical to midplane
- Geometric angle from solenoids to IP set so spin is longitudinal at IP
 - One "long" solenoid module for 18 GeV
 - One "short" solenoid module for 6 GeV
 - Both used for 10 GeV
- 5 GeV won't be perfectly longitudinal at the IP
 - Short solenoid module would need an even larger angle from the IP; geometry issues
 - Very close to having a full solution for this

ESR Spin Rotation

- Solenoid module consists of two solenoids, separated by 5–7 quadrupole
 - Transfer maps in two planes are negative of each other to decouple
 - In each plane, to remove dependence of spin on horizontal amplitude, map is of the form

$$\begin{bmatrix} 0 & -2/|K_s| \\ |K_s|/2 & m_{22} \end{bmatrix}$$

Optimize to keep pole tip OK for warm quads, overall length (geometry)

ESR Spin Rotation

- Ideally, zero dispersion in solenoids
 - For 10 and 18 GeV, zero dispersion in long solenoids
 - Small dispersion in short solenoids for 6 and 10 GeV (can't make it zero)
 - Match using end of arc and quadrupoles between rotator modules

ESR Layout

- Spin rotator geometry is pretty rigid, fixed location and direction at end of long solenoid
- Significant bending required to steer beam to IP
- IP 81 cm inside of RHIC IP, plus horizontal tilt w.r.t. RHIC tunnel axis
- Dipoles sometimes placed to reduce dispersion amplitude rather than optimally for geometry

Phase to Arcs

- To reduce chromatic functions in ring and improve DA, adjust phase advance between IP and arc
- Use combination of IR matching section and quads between rotator modules
- Since fit is very constrained, leads to increased beta functions and chromaticity

Solenoid Compensation

- Detector solenoid introduces coupling
- Coupling is corrected with skew quadrupoles
- ESR: one final focus quad has a skew quadrupole winding, then 7–8 other skew quadrupoles
- Need to correct
 - Linear coupling
 - Vertical dispersion
 - Vertical component of crabbing

Plots: V. Morozov

Solenoid Compensation

- HSR more complex
- Two skew quadrupoles (one a winding in a final focus dipole) between IP and crab cavities to remove vertical crabbing component
- Solenoid aligned to ESR, so need 2 skew dipoles to correct orbit before crab cavities (again, one in a final focus dipole)
- Insufficient skew quadrupoles available to correct coupling locally, will correct globally
- Work in progress

Summary

- Have IR lattice designs that
 - Meet physics requirements
 - Are matched into the rest of the ring
 - In HSR, match mostly with RHIC magnets
- Main challenges
 - Very tight on space
 - Constrained geometry and many horizontal constraints make dispersion matches challenging
- Study need for crab bump closure, find a solution if necessary
- Coupling from detector solenoid corrected for ESR, HSR will be done

Acknowledgements

Other contributors: G. Hoffstaetter, J. Kewisch, C. Liu, D. Marx,
V. Morozov, Y. Nosochkov, R. Palmer, B. Parker, V. Ptitsyn,
M. Signorelli, S. Tepikian, H. Witte