

DYNAMIC APERTURE AND SEXTUPOLE TUNING STUDIES IN THE FCC-EE

T. Charles, B. Härer, M. Hofer, B. Holzer, K.Oide, L. van Riesen-Haupt, D. Shatilov, T. Tydecks, F. Zimmermann

Introduction

- FCC-ee targets unprecedented luminosities
 - Numerous implications on layout, among those are
 - Small β^* resulting in large chromaticity generated by final focus quadrupoles
 - Top-up injection to increase integrated luminosity
 - Large energy spread due to beamstrahlung
 - Challenge is to find good chromaticity correction scheme with sufficient dynamic aperture (DA) and momentum aperture (MA) to avoid excessive particle loss

Sources: <u>1,2,3,4</u>

Required DA and momentum acceptance

- DA and MA requirements stem from:
 - Sufficiently large DA for top-up injection
 - MA to keep beam lifetime high $(\tau_{beam} > 20 \ min \ at \ t\bar{t})$
- DA requirements from top-up injection estimated in

M. Aiba et al., Top-up injection schemes for future circular lepton collider and

K. Oide, 31st FCC-ee optics design meeting

- For on-momentum injection, target DA larger than 15 σ_x
- For off-momentum injection, DA at ± 1.8 % larger than 5 σ_x
 - Assuming 5 σ_x stored beam and 5 σ_x injected beam

- MA follows large energy spread due to beamstrahlung and to keep reasonable beam lifetime
 - For lower energy modes $\delta_{acceptance} > 1.5\%$, whereas $t\bar{t}$ requires $\delta_{acceptance} > 2.8\%$ (References: <u>F. Zimmermann et al. IPAC14, MOXAA01, A. Bogomyakov et al. PRSTAB 17, 041004,</u>

K. Ohmi and F. Zimmermann, IPAC14, THPRI004)

Chromaticity correction schemes

- Two chromaticity correction schemes in FCC-ee
 - Local correction of vertical chromaticity in the IR
 - Crab sextupoles integrated in the local chromaticity correction scheme (LCCS)

- Sextupoles in arcs to correct ring chromaticity
 - Two options studied interleaved scheme and non-interleaved scheme

Local chromaticity correction in IR

- Local chromaticity scheme based on K.Oide, Final focus system with odd-dispersion scheme and presented in K. Oide et al., PRAB 19, 111005 (2016)
 - Two sextupoles separated by phase advance of π
 - Inner sextupole in dispersive region to correct Q'_{ν} from final focus quadrupoles
 - Strength of outer sextupole set to cancel geometric contribution, reduced to generate crab waist
 - Phase from IP to first arc sextupole subject to optimization

Arc sextupoles and constraints

- Set arc sextupoles to correct $Q'_{x,y}$ of the ring to target values while achieving sufficient DA and MA (natural $Q'_{x,y}$ after LCCS: -500 units)
 - Additional constraint from chromatic optics in IP (see <u>H. Sugimoto et al., IPAC2017, MOPIK076</u>)

$$\frac{1}{\beta_{x,y}^{*}} \frac{\partial \beta_{x,y}^{*}}{\partial \delta} = \mp \sum_{i} \frac{\beta_{x,y}^{i} D_{x}^{i}}{2 \sin(2\pi Q_{x,y})} k_{2}^{i} \cos(2|\mu_{x,y}^{*} - \mu_{x,y}^{i}| - 2\pi Q_{x,y})$$

 May be extended to other elements such as collimators

- Correction schemes to follow the arc cell layout
 - Currently, FODO lattice is used due larger filling factor thus lower ΔE_{turn} , other options such as DBA studied in

K. Oide, KEK Seminar, Jun. 2016

B. Härer, Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

Arc optics and layout

- Baseline FCC-ee arc uses FODO cells with variable cell length
 - For Z and W, cell length of ~100m and phase advance of 90°/90°
 - Quadrupole will be installed in the gaps, reduced cell length to 50m for H and $t\bar{t}$, keeping phase advance of $90^{\circ}/90^{\circ}$
- Chromaticity correction by families of non-interleaved sextupole pairs
 - During CDR phase, interleaved schemes with up to 6 families
 were studied (see <u>B. Härer, CERN-THESIS-2017-073</u> and <u>35th FCC-ee optics design meeting</u>)
 but DA/MA didn't meet requirements
- Note: currently, lattice with perfect 4-fold periodicity is studied
 - Collimation and Inj./Extraction (to be integrated

0.02

Studies on non-interleaved scheme

Correction scheme in the baseline lattices is a non-interleaved scheme (see FCC-ee CDR and

-20

K. Oide et al., PRAB 19, 111005 (2016)

 Optimization using Downhill Simplex algorithm with the DA/MA area as figure of merit

• Tracking for 2 times long. damping time 45 turns $(t\bar{t})$ / 2500 turns (Z), including tapering & SR $t\bar{t}$

• Using all 75 (Z)/ 146 ($t\bar{t}$) sextupole pairs ϵ_{30} as independent variables (keeping lattice periodicity)

Further optimization using PSO

- Use of genetic algorithms to optimize DA is established practice in light source community (see 1,2,3,4,5,6,7,8,9)
 - Particle swarm optimization (<u>PSO</u>) to improve DA has been studied in the FCC-ee (See <u>T. Tydecks, 78th FCC-ee Optics Design Meeting</u>, <u>FCC-ee CDR</u>, and <u>example code</u>)
 - Initialization of a population of given size, evaluate objective function, and update individual particle based on global best solution and past best solution of individual
 - Shown promising improvements, MA area increased by 18%

Issues and next steps

- Goals met so far only without errors/corrections included
 - Significant loss of DA when errors are included (see e.g. <u>T. Charles and L. van Riesen-Haupt, 135th FCC-ee optics design meeting</u>, <u>K. Oide, FCCIS WP2 Workshop 2021</u>, <u>T. Tydecks, FCC-week 2018</u>), how much can be restored by reoptimization of sextupoles remains to be studied
- Investigate solutions to reduce complexity
 - Reduced number of independent sextupole pairs
 - Schemes to reduce higher order chromaticity and amplitude detuning and impact on DA/MA
 - Tolerable deviation from perfect periodicity by optics errors

Outlook

- Size and performance requirements make FCC-ee a challenging machine in terms of DA
 - Sufficient DA for top-up injection and large MA to keep particle after emission of beamstrahlung photons
 - Secondary constraints from chromatic optics in the IP
 - Different chromaticity correction schemes studied in the past
 - Non-interleaved correction scheme with LCCS in IRs meets DA requirements and is used in the baseline lattices
 - Open questions:
 - Maximum achievable DA and MA in presence of errors
 - Required number of sextupole knobs and tuning time/complexity in operation

Thanks for your attention!