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LHC collimation system

362 MJ stored beam energy

Design criteria: handle 500 kW beam losses over min. 10
seconds
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LHC needs a highly performant collimation system to
protect the machine (~ 100 collimators installed) 51 5o
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LHC collimation hierarchy

Primary collimators:
» Carbon-based (MoGr, CFC)

» Diffuse particles without absorbing too
much

* Robust against beam impacts

Secondary collimators:
« Carbon-based (MoGr, CFC)

« Diffuse particles further

Tertiary collimators / shower
absorbers

» Tungsten-based (Inermet180)

» Absorb energy and protect
superconducting magnets

» Can easily be damaged by beam
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Modeling and tracking

« Generic workflow used for many types of beam loss processes:

« 1: Generate a distribution of particles (depends on beam loss scenario)
2: Track particles until they hit a collimator or the aperture (SixTrack, Xtrack, ...)

3a: If particles hit a collimator, send them to a particle-matter interaction code (K2, FLUKA, Geant4, ...)
3b: If particles hit the aperture, assume that they are lost

4. Record lost particles/energy and continue tracking what comes out of the scattering module
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« Machine model: Optics, lattice and detailed aperture model to determine loss locations

 Required inputs:

» Detailed collimator model to scatter particles
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« Machine model: Optics, lattice and detailed aperture model to determine loss locations

» Detailed collimator model to scatter particles

» Post-processing:
« Summarize distribution of losses throughout the accelerator

« Impact distribution of losses -> input for more detailed FLUKA simulations (in some cases, see following
slides...)
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Source of Beam Losses

« Differentsources of betatron amplitude increase

« Diffusion
« Instabilities
* Dynamic aperture

* Imperfections in feedback systems/power supplies
 Collisiondebris from experiments
« Beam-gas/dustinteractions
« Beam instrumentation (wire scanners, beam-gas curtain, ...)

* Failures
* Asynchronous beam dumps / dump kicker misfires
* Injection kicker misfires / non-triggering

» Any other failure that causes beam particles to hit the collimators / aperture
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Initial particle distribution

« Dependsonwhat oneis simulating

« Large number of particles necessary for good statistics (typically ~O(1e7) for LHC studies of beam-induced quenches)

» Efficiency is thus critical and only "relevant” particles should be generated
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Initial particle distribution

« Dependsonwhat oneis simulating

* Large number of particles necessary for good statistics (typically ~O(1e7) for LHC studies of beam-induced quenches)

« Efficiency is thus critical and only "relevant” particles should be generated

« Generic halousedto representanumber of different scenarios causing increase of
transverse amplitude (standard ’loss maps™):

» Diffusion is too slow to simulate

* Ahalo is generated to impact the primary collimator on the first turn, scattering, multiturn effects and loss locations are
then simulated Direct halo

0.03¢ r_'“
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Initial particle distribution

« Dependsonwhat oneis simulating

* Large number of particles necessary for good statistics (typically ~O(1e7) for LHC studies of beam-induced quenches)

« Efficiency is thus critical and only "relevant” particles should be generated

« Generic halousedto representanumber of different scenarios causing increase of
transverse amplitude (standard ’loss maps™):

» Diffusion is too slow to simulate

* Ahalo is generated to impact the primary collimator on the first turn, scattering, multiturn effects and loss locations are

then simulated Direct halo
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Initial particle distribution

« Dependsonwhat oneis simulating

* Large number of particles necessary for good statistics (typically ~O(1e7) for LHC studies of beam-induced quenches)

« Efficiency is thus critical and only "relevant” particles should be generated

« Generic halousedto representanumber of different scenarios causing increase of
transverse amplitude (standard ’loss maps™):

» Diffusion is too slow to simulate

* Ahalo is generated to impact the primary collimator on the first turn, scattering, multiturn effects and loss locations are

then simulated Direct halo
« Impact parameter 0.03l f"‘ || impact parameter depends on
halo primary collimator jaws 002l the machine
d = 0.01} 1 _ _ _

. . . S ol | In LHC p+ simulations, typically

'mpact parameter % 0.01} | 1~10 pm is used, giving similar results
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Initial particle distribution

« Dependsonwhat oneis simulating

* Large number of particles necessary for good statistics (typically ~O(1e7) for LHC studies of beam-induced quenches)

« Efficiency is thus critical and only "relevant” particles should be generated

« Generic halousedto representa number of different scenarios causing increase of
transverse amplitude (standard ’loss maps™):

» Diffusion is too slow to simulate

* Ahalo is generated to impact the primary collimator on the first turn, scattering, multiturn effects and loss locations are
then simulated

« Impact parameter

 Failures:

» Generate a particle distribution that undergo the same dynamics as in the real failure

« If "small’ fractions of the bunch is expected to be lost (e.g. crab cavity failures), a complete halo, without the bunch
core, is generated

» If the whole bunch is expected to be lost (e.g. dump kicker failures), a whole bunch, including core, is generated
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Loss Maps — betatron cleaning insertion (IR7)

 Particle losses around the

ring are binned and 10 Simulation mm collimators
normalized to maximum 10 9 DSIDS2 Al A9 A3 == warm aperture

« Good agreement between
simulations (top) and
measurements (bottom)
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SixTrack limitations
SixTrack (with FLUKA coupling) can:

Produce realistic loss distributions in aperture and
collimators

Study a vast variety of machine states and beam loss
mechanisms, over single or multiple turns

Can be used to compare different configurations
(optics, collimator setups/locations/materials, ...) and
find issues or possible improvements related to those

SixTrack cannot:

Accurately quantify energy deposition in collimators
or aperture / magnets

Simulate background signals in experiment detectors

Other tools necessary for this, e.g. standalone
FLUKA or Geant4

(BLM signal)/(TCP BLM signal)

(TCT loss)/(TCP loss)
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R. Bruce, Simulations and measurements of beam loss patterns at the CERN
Large Hadron Collider, Phys. Rev. Spec. Top. Accel. Beams 17 (2014) 081004
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Benchmarking of BLMs

 Multiturn cleaning is
simulated with SixTrack Dis%e/sion/
/

suppressor

 Proton impacts on
collimators / aperture
are sent to FLUKA team
for a second round of
pure simulations
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J-B. Potoine, "Latest results of power deposition studies for crystal-assisted Pb collimation”,
155t CollUSM, https://indico.cern.ch/event/1212179/
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Experiment Background

« Generated by:

» Impacts on collimators (TCTSs)
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pos around IP5 [m]
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Experiment Background

« Generated by:

» Impacts on collimators (TCTSs)
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Experiment Background

« Generated by:

» Impacts on collimators (TCTSs)
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Experiment Background

« Generated by:

» Impacts on collimators (TCTSs)
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Dump kicker magnet misfire

« One out of 15 dump kicker magnets fires accidentally
« Afull bunch (gaussian) is tracked
« From second turn, the DYNK module in SixTrack applies a dynamic kick for extraction kickers

« Several consecutive bunches tracked, passing kicker at different times
-> different kicks

« Results are summed over all bunches

* Injection kicker failures are essentially
treated in the same way
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Summary

The stored energy in the LHC beams provides significant challenges

A sophisticated collimation system is employed to protect the machine from damage
as well as the superconducting magnets from quenches

Simulation of beam losses is done in multiple stages using a combination of tracking
(SixTrack), particle-matter interactions (FLUKA), as well as thermomechanical and
vacuum codes

Beam loss distribution, studies of mitigation methods, comparison of different
machine configurations can be done using SixTrack (and Xtrack)

For power deposition, quench evaluation, detector background simulations, SixTrack
results are fed into FLUKA
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