

Beam halo losses in the FCC-ee MDI

<u>A. Abramov</u>, G. Broggi, R. Bruce, M. Hofer, S. Redaelli

FCC-EIC Joint & MDI Workshop 2022- 24/10/2022

Many thanks for discussions and input to:

M. Boscolo, H. Burkhardt, F. Cerutti, T. Charles, W. Herr, B. Holzer, R. Kersevan, A. Lechner, M. Luckhof, M. Migliorati, T. Persson, L. Van Riesen-Haupt, G. Roy

FCC-ee beam halo collimation

- Studies are ongoing for a collimation system in the FCC-ee.
 - The stored beam energy in the FCC-ee reaches 20.7 MJ
 - Such beams are highly destructive: a collimation system is required
 - The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiment
 - The beam halo collimation system:
 - Betatron and off-momentum collimation in one insertion
 - Define the global aperture bottleneck
 - Protect against regular and anomalous beam losses
 - · Localise the beam losses away from the experiments
 - Talk last week on the simulation tools for beam collimation (link)
 - Talk last week on aperture, collimation optics and layout (M. Hofer) (link)
 - In this talk: studying beam halo losses in the MDI

24/10/2022

Collimation study requirements

• Simulation model:

- Lattice, optics, corrections
- Mechanical aperture model
- Collimation system model
 - Layout, collimator parameters, settings
- Beam loss scenario
 - Beam distribution
 - Loss power estimate

Equipment loss tolerances

- Quench limits for superconducting elements
- Damage limits for warm equipment
- Detector background tolerances

Collimation system performance

Current study: beam halo losses

- "Generic halo" beam loss scenario:
 - Assume a slow diffusion process halo particles intercepted by the primary collimators
 - The diffusion is not simulated, all particles start impacting a collimator
 - The particles have the "worst" impact parameter
 - Determined with an impact parameter scan
 - Provides a conservative performance estimate
 - Study horizontal and vertical betatron halo, and offmomentum halo impacts
 - Track the particles scattered out from the collimator and record losses on the aperture
 - Specify a beam lifetime that must be sustained
 - Currently assuming 5 min

Impact parameter scan for 2 IP CDR lattice with MoGr primary collimator, with and without radiation and tapering (R&T)

impact parameter [um]

Collimation at ttbar

Status

- Using the 4IP lattice with the latest settings
- Collimator settings based on machine aperture and top-up injection requirements (M. Hofer)
- First guess on FCC-ee collimator parameters (G. Broggi, <u>talk</u>)
- Focus on studying the collimation performance
- Still resolving issues with RF matching radiation and tapering not included yet.

FCC-ee collimation optics repository: link

ſ	name	type	length[m]	nsigma	half-gap[m]	material	plane
bet	tcp.h.b1	primary	0.4	15.0	0.013802	MoGR	Н
	tcp.v.b1	primary	0.4	80.0	0.002466	MoGR	V
at -	tcs.h1.b1	secondary	0.3	17.0	0.011591	Мо	Н
, ON	tcs.v1.b1	secondary	0.3	89.5	0.00184	Мо	V
	tcs.h2.b1	secondary	0.3	17.0	0.008688	Мо	Н
off-mom.	_tcs.v2.b1	secondary	0.3	89.5	0.003685	Мо	V
	tcp.hp.b1	primary	0.4	23.0	0.017253	MoGR	Н
	tcs.hp1.b1	secondary	0.3	26.0	0.010004	Мо	Н
	tcs.hp2.b1	secondary	0.3	26.0	0.013558	Мо	Н

Collimator settings

Loss map studies at ttbar

- Results from tracking studies
 - Horizontal betatron collimation, no radiation and tapering, 5x10⁶ macro-particles, 700 turns, 1 um impact parameter
 - Significant losses observed in all 4 IPs

Total loss power P = 923.97 W

	P [W]	R [p/s]
IPA	4.404	1.5e8
IPD	3.192	1.0e8
IPG	3.041	1.0e8
IPJ	4.630	1.5e8

Integrated losses +-100 m from IP for a 5 min beam lifetime

Losses in the IRs for ttbar

- Loss distribution in the IRs:
 - Particles scattered by the primary collimator and not intercepted by the secondary ones
 - Most of the losses in the vertical plane, on the final focus quadrupole aperture
 - Losses passed on to MDI team (A. Ciarma) for detector background studies

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.03

-0.02

[m] 9dl ssol

Loss mitigation strategies for ttbar

- The option of using tilted collimators considered
 - Collimator aligned with the beam divergence
 - Sensitivity studies required
 - May not be feasible for operation
 - The tilt simulations are also useful for error studies
- There are other possible approaches to mitigate the losses
 - Optimizing the optics, layout, and settings of the collimation insertion
 - The integration of SR collimators can help
 - Additional local collimation stages in the IR to be considered

Collimation at Z

Status

- The model is set up in a similar way to ttbar
- The layout of the vertical collimators has been adjusted to reduce the impedance
- Radiation and tapering not included in the collimation models yet, also some minor issues with the DA remain

FCC-ee optics repository: <u>link</u> FCC-ee collimation optics repository: <u>link</u>

Г	name	type	length[m]	nsigma	half-gap[m]	material	plane
be	tcp.h.b1	primary	0.4	11.0	0.005504	MoGR	Н
	tcp.v.b1	primary	0.4	65.0	0.002332	MoGR	V
र्घ 🗍	tcs.h1.b1	secondary	0.3	13.0	0.004162	Мо	Н
0	tcs.v1.b1	secondary	0.3	75.5	0.00203	Мо	V
	tcs.h2.b1	secondary	0.3	13.0	0.005956	Мо	Н
	tcs.v2.b1	secondary	0.3	75.5	0.002118	Мо	V
	tcp.hp.b1	primary	0.4	29.0	0.005755	MoGR	Н
ġ,	tcs.hp1.b1	secondary	0.3	32.0	0.01649	Мо	Н
B [tcs.hp2.b1	secondary	0.3	32.0	0.011597	Мо	Н

Collimator settings

Loss map studies at Z

- Results from tracking studies
 - Horizontal betatron collimation, no radiation and tapering, 5x10⁶ macro-particles, 700 turns, 1 um impact parameter
 - Better cleaning efficiency than for ttbar

Total loss power P = 59178.12 W

	P [W]	R [p/s]
IPA	1.912	2 . 6e8
IPD	1.051	1.4e8
IPG	0.855	1.2e8
IPJ	2.808	3 . 9e8

Integrated losses +-100 m from IP for a 5 min beam lifetime

Losses in the IR for Z

- Loss distribution in the IRs:
 - Particles scattered by the primary collimator and not intercepted by the secondary ones
 - Losses again in the final focus quadrupole, but distributed between horizontal and vertical

0.04

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

-0.04

-0.04

-0.03

-0.02

[m] gal

• Losses for this case also passed on to the MDI team.

Distributions of lost particles in IRG

Next steps

- Integrate the SR collimators and masks in the collimation system model
- Include radiation and tapering in the latest 4 IP models
- Refine the mechanical aperture model
- Study different beam loss scenarios
 - Injected beam
 - Spent beam (Beamstrahlung, Bhabba, etc.)
 - Failures (injection, extraction, instabilities)
- Obtain better equipment loss tolerances
 - Detector background limits
 - Quench limit for the final focus quadrupoles (energy deposition studies required)

Thank you!

