FCC Feasibility Study Status FCC-EIC Joint MDI workshop, 17 October 2022

Michael Benedikt, CERN on behalf of the FCC collaboration and FCCIS DS team

LHC

Work supported by the European Commission under the HORIZON 2020 projects EuroCirCol, grant agreement 654305; EASITrain, grant agreement no. 764879; ARIES, grant agreement 730871, FCCIS, grant agreement 951754, and E-JADE, contract no. 645479

ARIES

<u>SPS</u>

European Commission

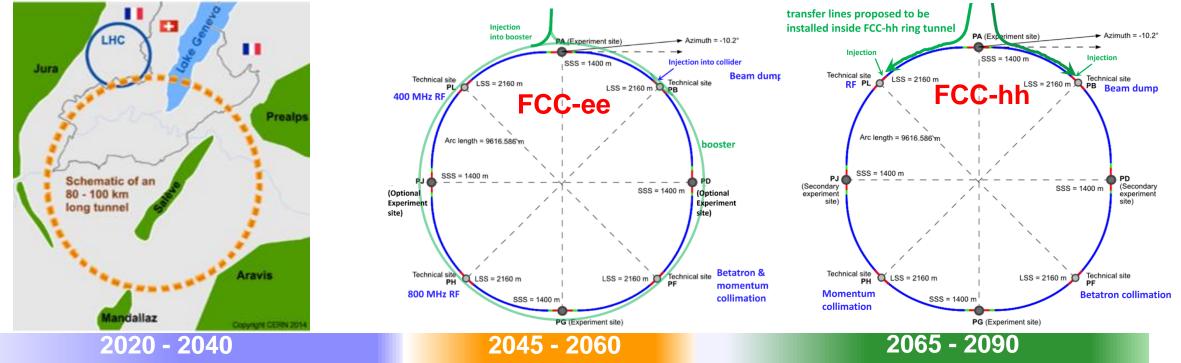
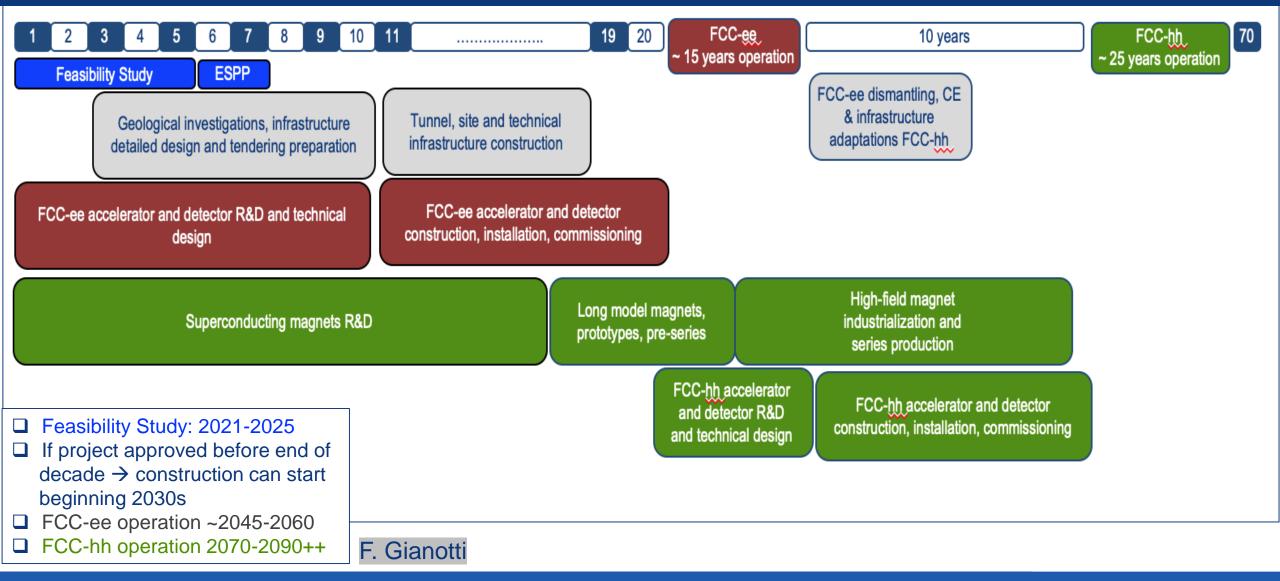

European Union funding for Research & Innovation

photo: J. Wenninger

C FUTURE The FCC integrated program CIRCULAR inspired by successful LEP – LHC programs at CERN

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program



FCC Feasibility Study Status Michael Benedikt FCC-EIC MDI Workshop, 17 October 2022

s a similar two-stage project CEPC/SPPC is under study in China

technical timeline of FCC integrated programme

FCC Feasibility Study Status Michael Benedikt FCC-EIC MDI Workshop, 17 October 2022

FUTURE

CIRCULAR COLLIDER

FCC Feasibility Study (FS)

2013 ESPPU requested FCC Conceptual Design fourvolume report \rightarrow 4 volumes delivered in 2018/19, describing the physics cases, the design of the lepton and hadron colliders, and the underpinning technologies and infrastructures. Fol-

2020 ESPPU→ 2021 Launch of FCC Feasibility Study (FCC FS) by CERN Council

- Feasibility Study Report (FSR) expected by the end of 2025, not only the technical design, but also numerous other key feasibility aspects, including tunnel construction, financing, and environment
- FSR will be an important input to the next ESPPU expected in 2026/27.

FCC FS is organized as an international collaboration. The FCC FS and a possible future project will profit from CERN's decadelong experience with successful large international accelerator projects, e.g., the LHC and HL-LHC, and the associated global experiments, such as ATLAS and CMS.

Organisational Structure of the FCC Feasibility Study http://cds.cern.ch/record/2774006/files/En

Main Deliverables and Timeline of the FCC **Feasibility Study**

http://cds.cern.ch/record/2774007/files/En glish.pdf

		CERN/SPC/1155/Rev.: CERN/3566/Rev.2 Original: English 21 June 2021			CERN/3588 Original: Englis 21 June 2021
	EUROPÉENNE POUR LA RECH DPEAN ORGANIZATION FOR N			EUROPÉENNE POUR LA RECHE PEAN ORGANIZATION FOR NU	
			Action to be taken		Voting Procedure
dction to be taken For decision	RESTRICTED COUNCIL 203 ^{ed} Session 17 June 2021	<u>Foting Procedure</u> Simple majority of Member States represented and votin	Action to be taken For information	RESTRICTED COUNCIL 203 ²⁴ Session 17 June 2021	Voting Procedure

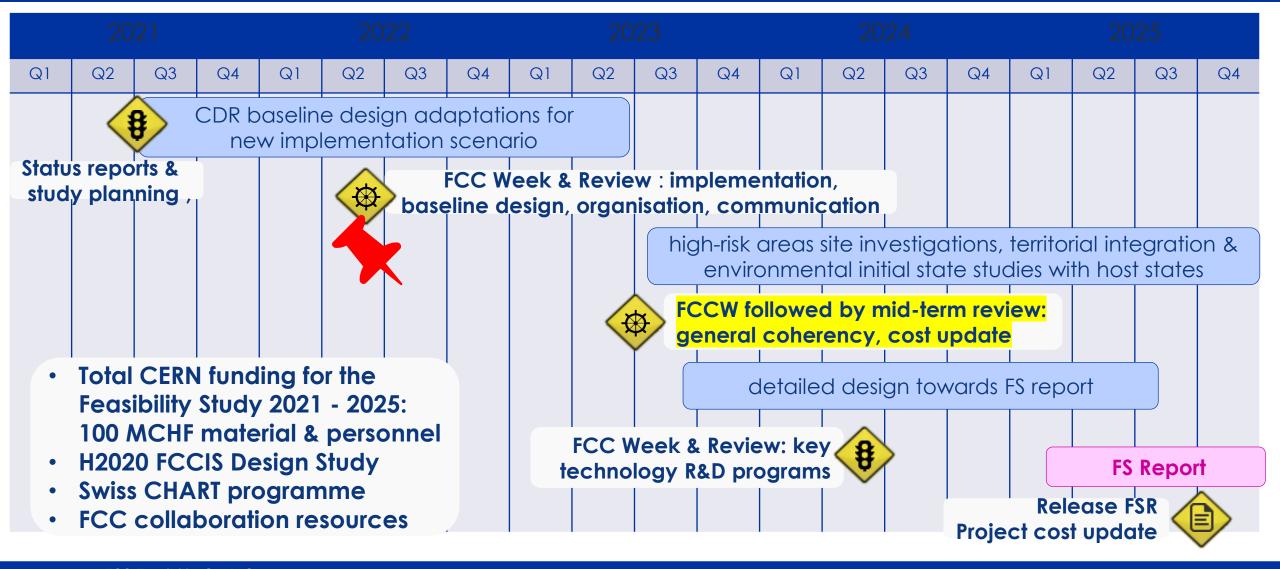
MAIN DELIVERABLES AND MILESTONES

nent sets out the proposed organisational structure for the Feasibility Study of Future Circular Collider, to be carried out in line with the recommendations of the Europe Strategy for Particle Physics updated by the CERN Council in June 2020. It reflects discussion of this study will be summarised in a Feasibility Study Report to be completed by at, and feedback received from, the Council in March 2021 and is now submitted for the latte 2025.

PROPOSED ORGANISATIONAL STRUCTURE

glish.pdf

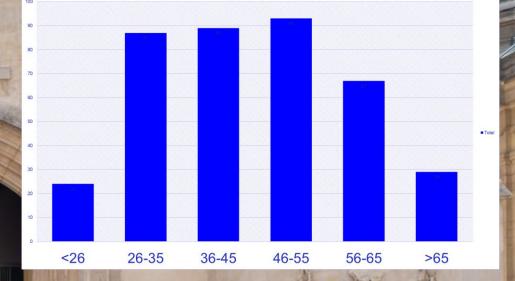
This document describes the main deliverables and milestones of the study being carried out to assess the technical and financial feasibility of a Future Circular Collider at CERN. The result



FUTURE

CIRCULAR COLLIDER

Feasibility Study Timeline



FCC Week 2022, Sorbonne, Paris, 30 May – 3 June 2022

483 participants 269 in person and 214 remote

45 sessions,202 presentations+ 20 posters

Distribution of participants by age group

FUTURE CIRCULAR Mid-Term Review & Cost Review, autumn '23

Mid-term review report, supported by additional documentation on each deliverable, will be submitted to review committees and to Council and its subordinate bodies, as input for the review.

Results of both general mid-term review and the cost review should indicate the main directions and areas of attention for the second part of the Feasibility Study

Infrastructure & placement

- Preferred placement and progress with host states (territorial matters, initial states, dialogue, etc.)
- Updated civil engineering design (layout, cost, excavation)
- Preparations for site investigations

Technical Infrastructure

- Requirements on large technical infrastructure systems
- System designs, layouts, resource needs, cost estimates

Accelerator design FCC-ee and FCC-hh

- FCC-ee overall layout with injector
- Impact of operation sequence: Z, W, ZH, $t\bar{t}$ vs start at ZH
- Comparison of the SPS as pre-booster with a 10-20 GeV linac
- Key technologies and status of technology R&D program
- FCC-hh overall layout & injection lines from LHC and SC-SPS

Physics, experiments, detectors:

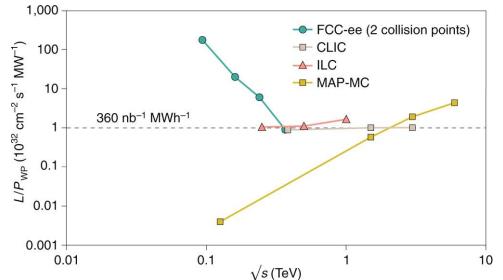
- Documentation of FCC-ee and FCC-hh physics cases
- Plans for improved theoretical calculations to reduce theoretical uncertainties towards matching FCC-ee statistical precision for the most important measurements.
- First documentation of main detector requirements to fully exploit the FCC-ee physics opportunities

Organisation and financing:

- Overall cost estimate & spending profile for stage 1 project

Environmental impact, socio-economic impact:

- Initial state analysis, carbon footprint, management of excavated materials, etc.
- Socio-economic impact and sustainability studies


sustainability and carbon footprint studies

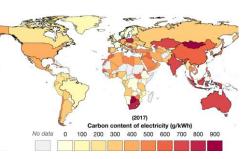
highly sustainable Higgs factory

FUTURE

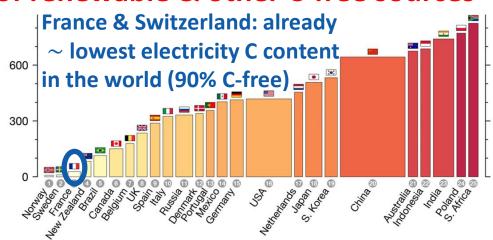
COLLIDER

luminosity vs. electricity consumption

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection


optimum usage of excavation material int'l competition "mining the future[®]"

https://indico.cern.ch/event/1001465/

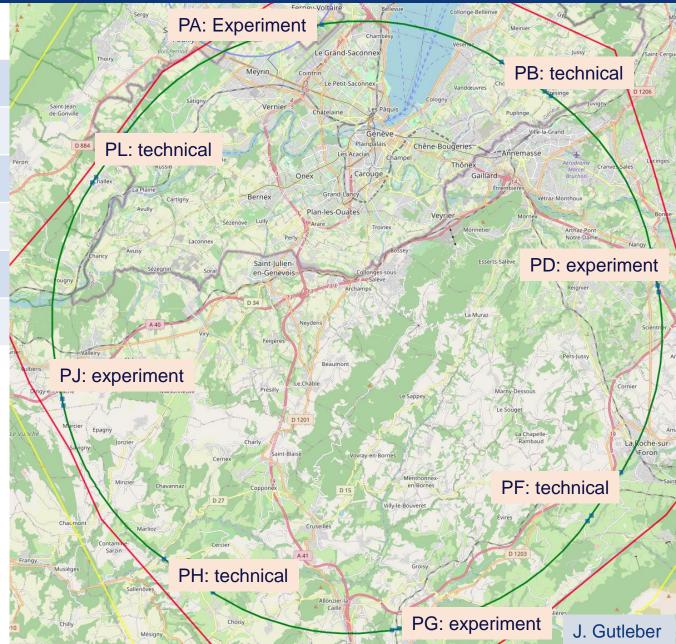

FCC-ee annual energy consumption ~ LHC/HL-LHC

120 GeV	Days	Hours	Power OP	Power Com	Power MD	Power TS		wer down		
Beam operation	143	3432	293						1005644	MWh
Downtime operation	42	1008	109						110266	MWh
Hardware, Beam commissioning	30	720		139					100079	MWh
MD	20	480			177				85196	MWh
technical stop	10	240				87			20985	MWh
Shutdown	120	2880					6	69	199872	MWh
Energy consumption / year	365	8760							1.52	TWh
Average power									174	MW
JP. Burnet, FCC We	ek 20)22	CER	N Meyrin,	SPS, FCC		Z	W	Н	TT
incl. CERN site & SPS			Bear	Beam energy (GeV)			45.6	80	120	182.5
			Enei	Energy consumption (TWh/y)			1.82	1.92	2.09	2.54

powered by mix of renewable & other C-free sources

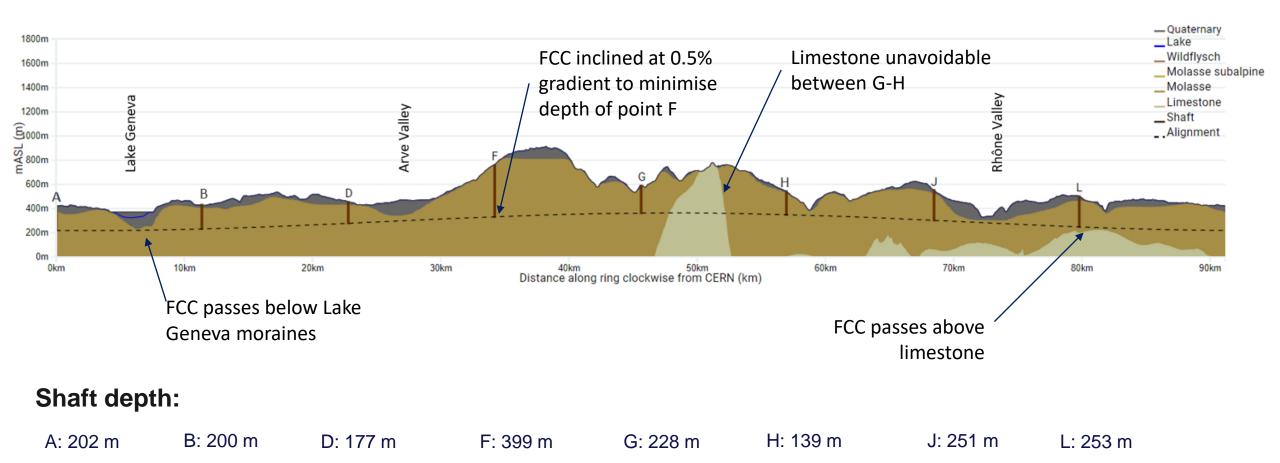
https://www.carbonbrief.org/

optimized placement and layout


8-site baseline "PA31"

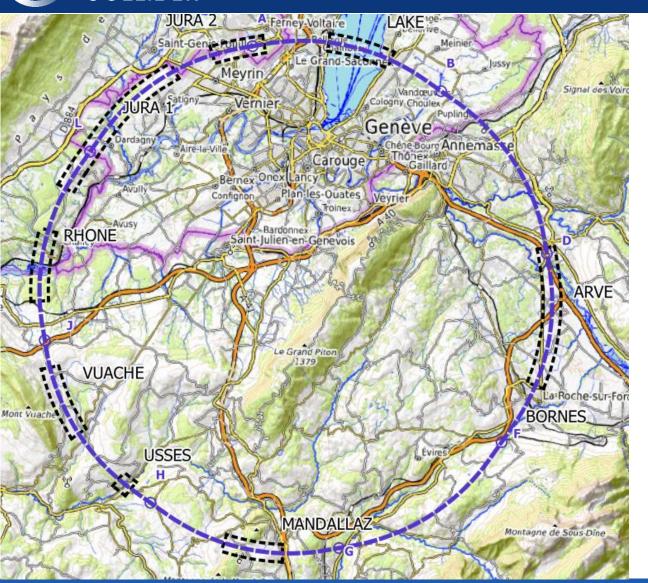
FUTURE

COLLIDER


Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructures (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest operation pole around Annecy/LAPP
- Exchanges with ~40 local communes in preparation

FCC Long Section – PA31-1.0



John Osborne

FUTURE CIRCULAR COLLIDER

plans for high-risk area site investigations

JURA, VUACHE (3 AREAS)

Top of limestone Karstification and filling-in at the tunnel depth Water pressure

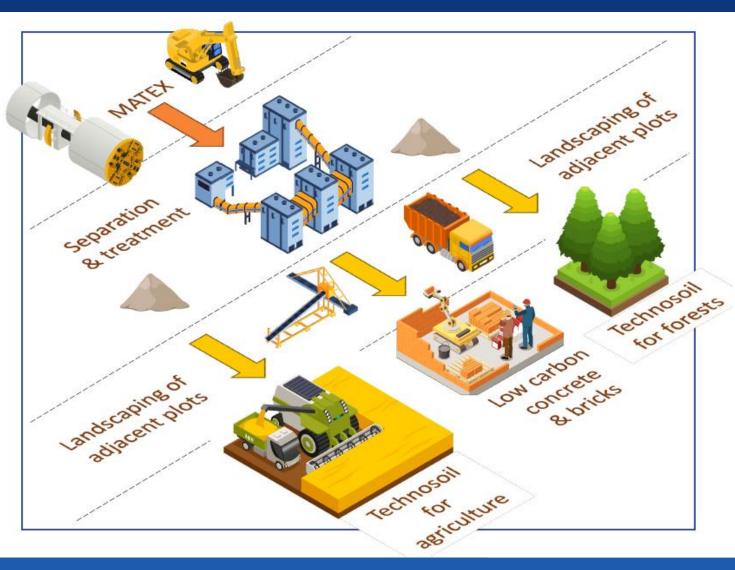
LAKE, RHÔNE, ARVE AND USSES VALLEY (4 AREAS) Top of the molasse Quaternary soft grounds, water bearing layers

MANDALLAZ (1 AREAS) Water pressure at the tunnel level Karstification

BORNES (1 AREA) High overburden molasse properties Thrust zones

Site investigations planned for 2024 – 2025: ~40-50 drillings, some 100 km of seismic lines

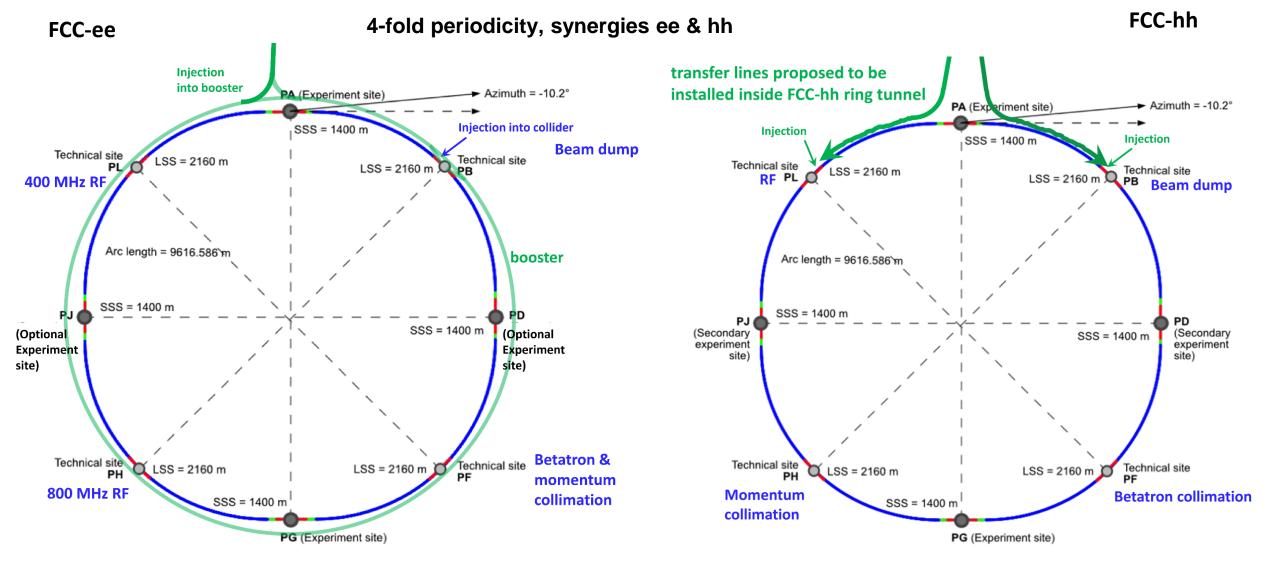
FCC Feasibility Study Status Michael Benedikt FCC-EIC MDI Workshop, 17 October 2022

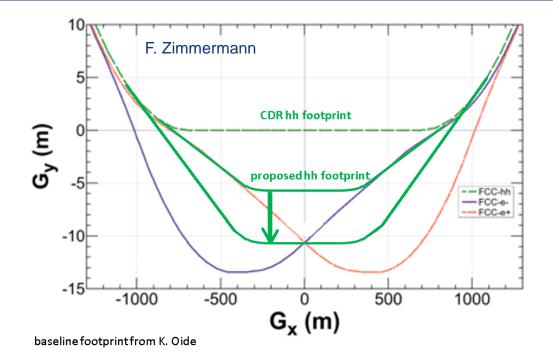

FUTURE CIRCULAR Mining the future – excavation material reuse

AMBERG Konsortium: In-situ characterisation (Crossbelt elemental analyzer) and preparation for use as construction material on site (Spritzbeton, Bindemittel aus Bio-Mineralstoffen), Production of construction elements withouth cement/concrete.

BG Konsortium: Online-analysis and preparation of Molasse for construction elements from sandstone, sabd, filing material for concrete, low-carbon concrete, terra cotta bricks, etc.

ARCADIS Konsortium: Molasse combined with some stabilisation material for production of construction bricks via high mechanical pressure. Replacing high-carbon construction materials. Mobile production plants directly on site.

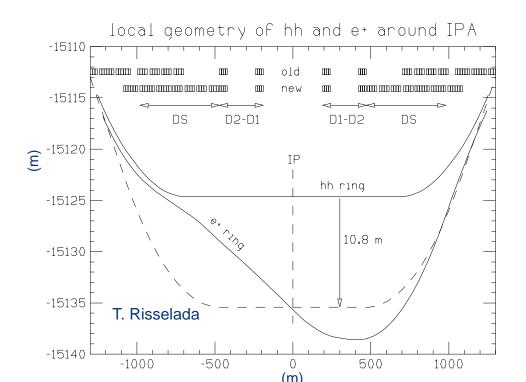

EDAPHOS Konsortium: Combining mineral (Molasse) material and organic material to produce fertile soil with on-site production plants by using mikrobiology to accelerate humus creation. Fertile soil as top layer for agricultural use, recultivation.


CIRCULAR new layouts & preliminary assignments of straight sections

injection-tunnel near PA; 400 MHz RF in PL; 4 exp. caverns for both

layout optimisation of high-luminosity insertions

Implementation of an improved layout with FCC-ee & FCC-hh IPs with same transverse positions


Advantages:

- Transverse size of detector cavern reduced
- Tunnel width reduced over 2 x 500 m
- Potential re-use of FCC-ee detector magnets for FCC-hh

In CDR:

- Due to FCC-ee asymmetric IR layout, transverse displacement of IPs for FCC-ee and FCC-hh.
- FCC-hh footprint compatible with FCC-ee injector

Massimo Giovannozzi & Thys Risselada

FCC-ee in a nutshell

- High luminosity precision study of Z, W, H, and tt
 2×10³⁶ cm⁻²s⁻¹/IP at Z (or total ~10³⁷ cm⁻²s⁻¹ with 4 IPs), 7×10³⁴ cm⁻²s⁻¹ at ZH, 1.3×10³⁴ cm⁻²s⁻¹ at tt
 , nprecedented energy resolution at Z (<100 keV) and W (<300 keV)</p>
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors ; R&D on components for improved performance, but no need for "demonstration" facilities; LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation
- Infrastructure will support a century of physics \circ FCC-ee \rightarrow FCC-hh \rightarrow FCC-eh and/or several other options (FCC- $\mu\mu$, Gamma Factory ...)
- Utility requirements similar to CERN existing use
- **Strong support** from CERN, partners, and 2020 ESPPU
- Detailed multi-domain feasibility study underway for 2026 ESPPU

Stage 1: updated parameters

FUTURE CIRCULAR COLLIDER

K. Oide, D. Shatilov,

Parameter [4 IPs, 91.2 km, T _{rev} =0.3 ms]	Z	ww	н (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / 14.5	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	2.02 / <mark>2.95</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab-1/yr]	87	9.3	3.5	0.65
beam lifetime rad Bhabha + BS [min]	19	18	6	9

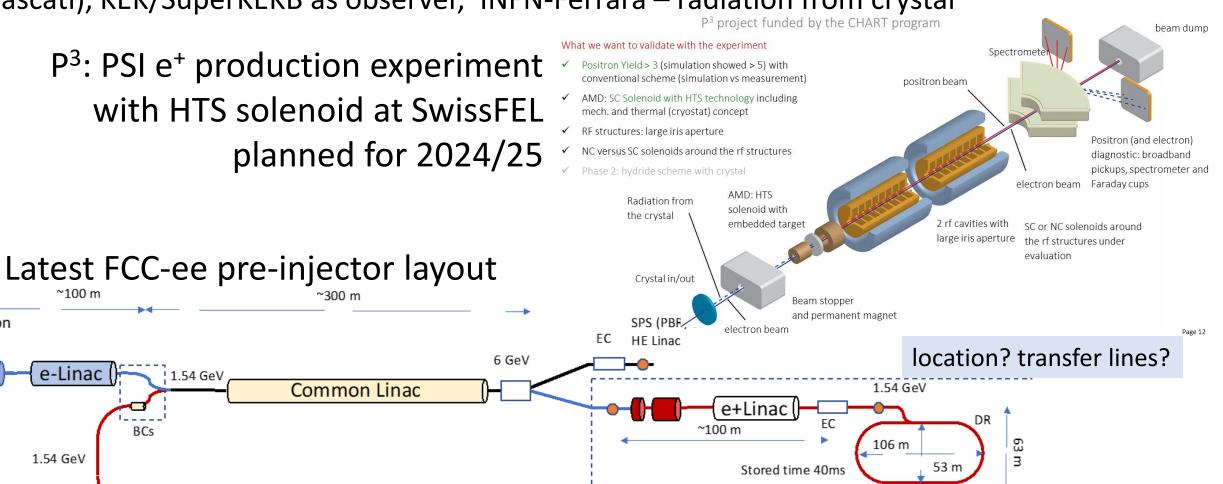
FCC-ee Pre-Injector - Swiss CHART 2 program

Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF (Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal

P³: PSI e⁺ production experiment with HTS solenoid at SwissFEL planned for 2024/25

Common Linac

FUTURE CIRCULAR COLLIDER


~100 m

e-Linac

1.54 GeV

Electron

source

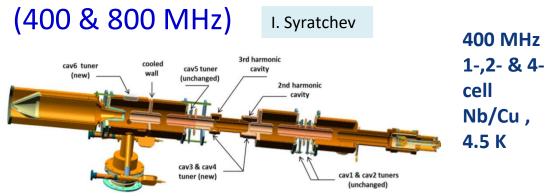
Positron source

bunch de estore

P. Craievich, A. Grudiev, C. Milardi, A. De Santis, et al.

! 1.54 GeV

BCs

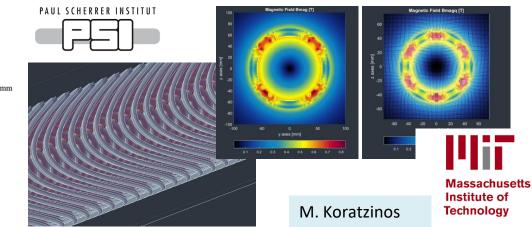

accelerator R&D examples

efficient RF power sources

FUTURE CIRCULAR

COLLIDER

E_{acc} (MV/m)


FPC & HOM coupler, cryomodule, thin-film coatings...

energy efficient twin aperture arc dipoles

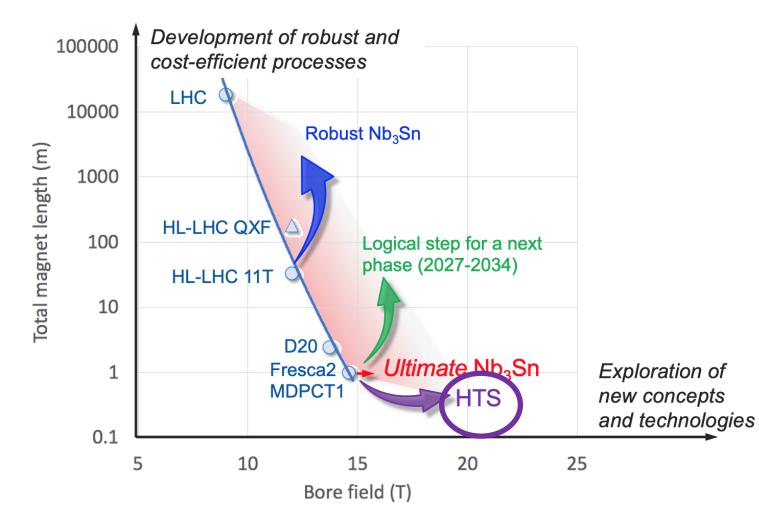
0.5 T 1.0 T

under study: CCT HTS quad's & sext's for arcs

Stage 2: FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC		
collision energy cms [TeV]	100		14	14		
dipole field [T]	~17 (~16 comb.function)		~17 (~16 comb.function)		8.33	8.33
circumference [km]	91	.2	26.7	26.7		
beam current [A]	0.	5	1.1	0.58		
bunch intensity [10 ¹¹]	1 1		2.2	1.15		
bunch spacing [ns]	25 25		25	25		
synchr. rad. power / ring [kW]	2700		7.3	3.6		
SR power / length [W/m/ap.]	32.1		32.1		0.33	0.17
long. emit. damping time [h]	0.45		0.45		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55		
normalized emittance [µm]	2.2		2.5	3.75		
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		5 (lev.)	1		
events/bunch crossing	170 1000		132	27		
Stored energy/beam [GJ]	7.8		7.8 0.7			

FUTURE CIRCULAR COLLIDER


preparing for FCC stage 2 (FCC-hh)

In parallel to FCC studies,

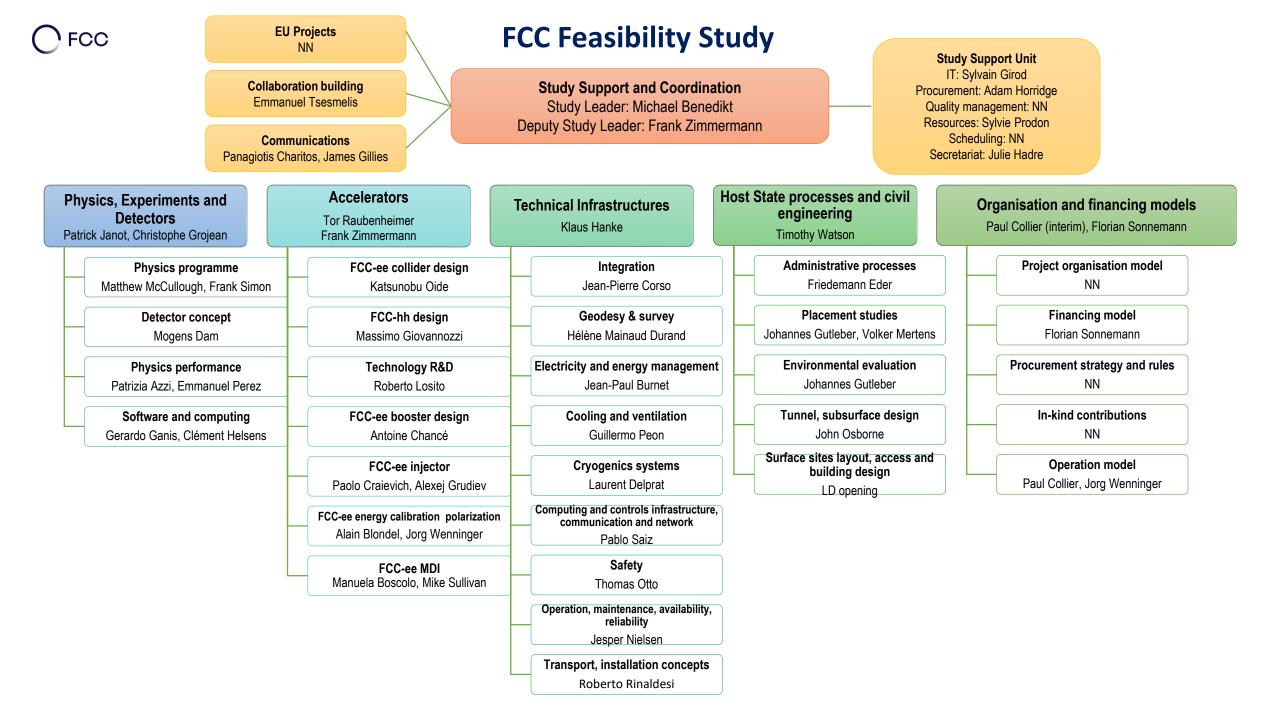
FUTURE

CIRCULAR COLLIDER

High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten years)

Main R&D activities:


- materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,

industrialisation and costs

infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development

L. Bottura, F. Gianotti, A. Siemko

Institutes

30

Companies

Status of Global FCC Collaboration

H2020

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

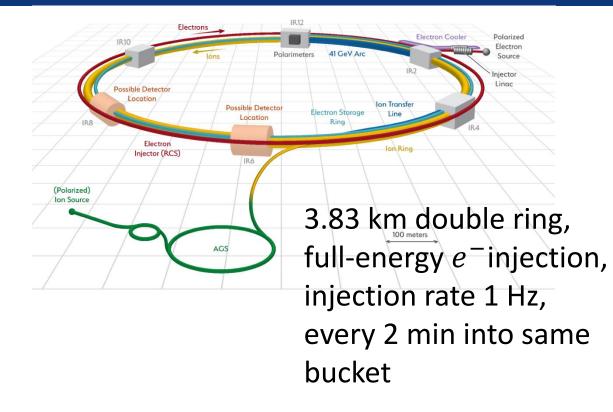
Countries

FCC Feasibility Study: 58 fully-signed previous members, 17 new members Mol L renewal of remaining CDR participants in progress

Electron Ion Collider (EIC)

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

~10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups.


EIC will start beam operation about a

decade prior to FCC-ee

FUTURE

COLLIDER

The EIC will provide another invaluable opportunity to train the next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.

	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

Outlook

Comprehensive R&D program and implementation preparation is presently being carried out in the frameworks of FCC FS, the EU co-financed FCC Innovation Study, the Swiss CHART program, and the CERN High-Field Magnet Programme. Goal: demonstrate FCC feasibility by 2025/26

Plenty of opportunities for collaborations (incl. DAFNE, EIC, SuperKEKB/Belle II,...) and for **joint innovative developments** with int'l partners !

The first stage of FCC could be approved within a few years after the 2027 European Strategy Update, if the latter is supportive. Tunnel construction could then start in the early 2030s and FCC-ee physics program begin in the second half of the 2040s, a few years after the completion of the HL-LHC physics runs expected by 2041.

Long term goal: world-leading HEP infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

Following 2020 European Strategy Update, organisation structure and major milestones & deliverables for the FCC Feasibility Study (FCC FS) approved by CERN Council in June 2021. Entire FCC government structure (members of SC, CB, SAC, CG) established by now (summer 2022).

Main activities: developing & confirming concrete implementation scenario, in collaboration with host state authorities, including environmental impact analysis, and accompanied by machine optimisation, physics studies and technology R&D - via global collaboration, supported by EC H2020 Design Study FCCIS and Swiss CHART. Goal: demonstrate feasibility by 2025/26

Long term goal: world-leading HEP infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

FCC WEEK

2023

5 – 9 June

OTRACK.