

EPFL-CERN Software Collaboration

EPFL Introduction

- Large number of tools used in FCC study
 - Often specialised to one purpose/aspect of beam physics
 - Sometimes tools with overlapping purpose used, depending on the user's expertise
- Vast and very active community in the CERN ABP Computing Working Group
 - Maintenance, improvement, complement existing codes
 - Development of modern, robust and broad tools for the entire accelerator community
- Large community outside of FCC and CERN with overlapping interests
 - Potential for synergies and cooperation

FCC Software Framework Project

- Understand requirements for the development and simulation of FCC
 - Which effects need to simulated and which tools exist or need to be developed/optimised for these purposes
 - Identify which simulations need to interplay/overlap and understand how they fit together in the "bigger picture"
- Ensure that the needs of the FCC study are met by
 - 1. Maintaining, benchmarking and improving current simulation tools
 - 2. Actively contributing to the **development** of **new simulations tools**
 - 3. Create tools to allow for **interfacing** between different simulation tools
- Work closely with the ABP Computing WG and identify synergies and come up with a common strategy
- Offer a first point of contact for external collaborators that see synergies

Available and Used Codes

Behold the Jungle

EPFL	Codes used for FCC-	-ee (Courtesy to Michael Hofer)
Domain	Organisation	Codes
	CERN	MAD-X, MAD-X PTC, SixTrack, SixTrackLib, Xsuite, MAD-NG, Placet, CPyMAI

EPFL	Codes	used for FCC-	ee (Courtesy to Michael Hofer)
Domain		Organisation	Codes
		CERN	MAD-X, MAD-X PTC, SixTrack, SixTrackLib, Xsuite, MAD-NG, Placet, CPy
		KEK	SAD

PyAT

BMAD

MERLIN++

GUINEA PIG, COMBI

pyHEADTAIL, TRAIN, DELPHI

BeamBeam3D

Elegant

BBSS

IBB

LifeTrac

IW2D

CST Studio

PyECLOUD

FLUKA, MDISIM

Synrad+

BDSIM

ESRF

ANL

CERN

LBNL

KEK

IHEP

BINP

CERN

CERN

CERN

CERN

CERN

Dassault systems

Royal Holloway

Cornell

Manchester/Huddersfield

Optics and Tracking

Beam-Beam

Collective Effects

Impedance Modeling

Ecloud Simulations

Energy Deposition

Vaccum

Dedicated Codes

 Development and Optimisation within FCC-ee Software Framework

Optics Codes

- Efforts by CERN colleagues to ensure MAD-X has adequate functionality to simulate FCC-ee
 - Benchmark with other simulation tools such as SAD (L. van Riesen-Haupt)
 - Implement new features that are essential to simulate FCC-ee (R. de Maria, T. Persson and many others)
 - Tapering
 - Permanent misalignments
 - Exact Solenoid
 - Create and share useful MADX scripts (G. Simon, M. Hofer and others)
 - https://gitlab.cern.ch/acc-models/fcc/fcc-eelattice
- Increased use of CPyMAD
 - Used in and together with python tools
 - Lower barrier of entry for new collaborators

L. van Riesen-Haupt, *Code comparison and lattice models,* FCC IS WS 2021

EPFL Xsuite

- Xsuite is a modern multiparticle simulation software developed by R. de Maria, G. ladarola and the ABP Computing WG that aims to:
 - Provide a broad functionality currently only partially provided by an array of CERN codes
 - Thereby also simplify the development and maintenance of codes
 - Make use of modern computing platforms such as GPUs
 - Can be used for a wide range of machines, including injectors, LHC, HL-LHC and future design studies such as FCC-ee
- The same ethos can/should be applied to FCC-ee code development

Beam-Beam, Beamstrahlung and Synchrotron Radiaiton

- EPFL PhD project of P. Kicsiny and X. Buffat
- Integration of various beam-beam models in Xsuite
 - Benchmarking against existing codes (COMBI, GUINEA-PIG)
 - Possibilities to exploit modern technologies such as OpenMP and GPU
 - Simulate other effects such as Beamstrahlung and interplay with other types of simulations
- Work complimented by analytical work by K. Le Nguyen Nguyen
- Essential for finding the ideal working point using most realistic simulations

P. Kicsiny, Simulation of FCC-ee Beam-beam Effects with Xsuite, FCC Week 2022

Electron Cloud

- Efforts by L. Sabato and L. Mether
- Improve electron cloud models based on LHC experience
- Identify design parameter range where electron cloud effects are most significant
 - Speed up studies
- Integrate models into Xsuite
 - Benchmark and test
 - Enable comprehensive studies with multiple effects
- Provide input to vacuum chamber design
 - Which will also take into account other effects

L. Sabato, *Electron Cloud Studies for FCC*, EPFL-LPAP Activity Meeting

Spin Polarisation

- EPFL PhD project of Y. Wu with various CERN and international collaborators
- Ensuring reliable polarisation studies by
 - Understanding spin dynamics theory
 - Benchmarking simulation tools (BMAD and SITROS)
 - Eventually implement in XSuite
- Ensure interplay between polarisation studies and other FCC efforts
 - Orbit corrections and bumps
 - Optics corrections
- Ensure sufficient polarization levels for energy calibration using resonant depolarization

Y. Wu, Spin Polarization Simulations for the Future Circular Collider e+e- using BMAD, 2d FCC Polarization Workshop

Speeding up Tracking Studies and Applying Machine Learning

- Efforts led by D. di Croce, Frederik van der Veken, G. ladarola
- Expect an increased computing time for tracking studies for FCC compared to LHC
 - Larger machine with more particle statistics
 - Require 6D tracking with radiation effects
- Xboinc aims to increase computation speed of tracking studies
 - Enable xtrack simulation to run on BOINC
 - Possibly develop GPU support
- Active Learning for Accelerators (ALA)
 - Machine learning software to predict DA without costly simulations

D. Di Croce, *Machine learning for FCC*, EPFL-LPAP Activity Meeting

Bringing it Together

Lattice Management and Conversion

Sequence Converter - Xconverter

- Sequence conversion tool in development by EPFL
 - All previous contributions driven by Felix Carlier
- Enable conversion between different simulation codes
 - Facilitate interplay between simulations
 - Ensure up-to-date lattices can quickly be propagated to users
 - Increased consistency between different simulations
- Written in python and available on github
 - https://github.com/fscarlier/xconverters

T. Pieloni, *Overview of the FCC Software framework developments*, FCC Week 2022

Sequence Manager - Xsequence

- Sequence manager developed by EPFL
 - Also previously driven by Felix Carlier
- Systematic and universal sequence description in python
 - Independent of the software the sequence was first written in
 - Conserve circuits and dependencies using the xdeps package (Riccardo de Maria)
- Provides an intermediate step for conversion
 - Allows modular additions to Xconverter
- https://github.com/fscarlier/xsequence

Optics Matching After Conversion

- Conversions can cause mismatch in optics due to
 - Differences in element definitions after translation
 - Slicing and thin lens approximation (e.g. for tracking)
- First order correction would be a global matching
 - (Tune, chromaticity etc.)
- Preferable to recover key optics properties in various locations
 - (β^* , phase advance between critical correction schemes etc.)
- Currently implemented in MAD-X
 - Successfully used for sliced lattices
- In the future define strategy in Xsequence
 - Match in every code after translation

Next Steps

- Define and implement post-conversion matching for Xconverter
- Add more component definitions to Xsequence
 - Tilted solenoid
 - Overlapping magnets
- Increase number of codes importing to and exported from Xconverter
 - First target: export to SAD

T. Pieloni, *Overview of the FCC Software framework developments*, FCC Week 2022

EPFL Conclusion

- Established a strong the foundation for a community of accelerator code developers with common interests to
 - Develop modern codes for broad purposes
 - Develop and maintain codes that will be essential to FCC-ee
- FCC-ee code and simulation developments at CERN and EPFL to
 - Provide accurate dynamic aperture studies with improved tracking tools and machine learning
 - Accurately simulate effects like beam-beam and electron cloud for lepton colliders
 - Simulate lepton collider specific effects such as polarisation
- Develop and improve an extensive lattice management and conversion tool to facilitate interplay of and ensure consistency between simulation