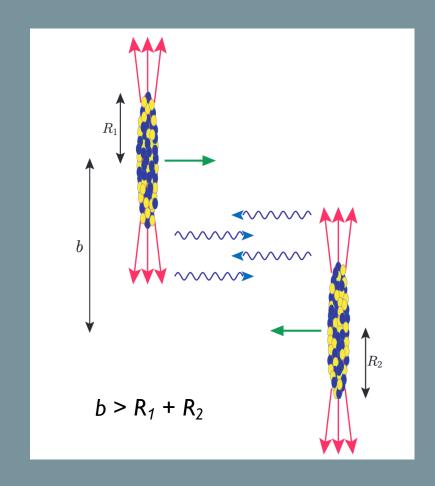
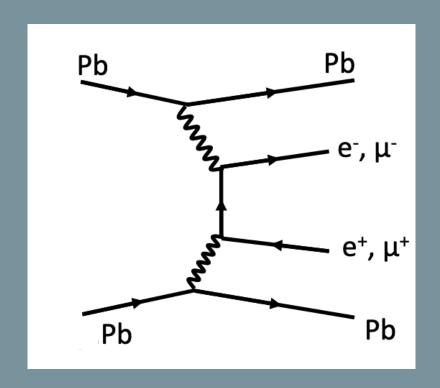


ALICE investigates photon induced processes in Pb-Pb collisions with nuclear overlap

L. Massacrier for the ALICE Collaboration

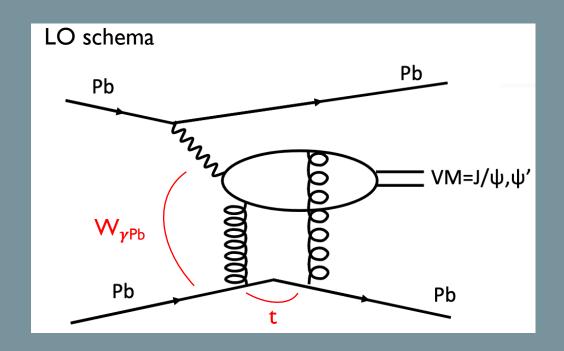

IJCLab Orsay, CNRS/IN2P3, Université Paris-Saclay

Photon induced processes and ultra-peripheral Pb-Pb collisions (UPC)



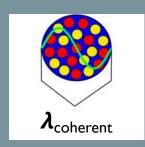
- The EM field of Pb nuclei can be described as beam of quasi-real photons (number of photons proportional to \mathbb{Z}^2)
- → Use LHC as photon-photon or photon-hadron collider
- UPC: interactions with b larger than the sum radii of the incoming nuclei. Involve at least one photon.
 - Hadronic interaction strongly suppressed
 - Electromagnetic interactions dominant
 - Clean experimental signature: few tracks in an otherwise empty detector
- ☐ Photon induced reactions well studied in UPC

Dilepton production in two-photon interactions



- ☐ Breit Wheeler mechanism (G. Breit, Phys. Rev. 46 (1934) 1087):
 - Production of very low p_T lepton pair
- ☐ Test QED (at LO + possibly higher order corrections)
 - ❖ ~ 15% effect for the reduction of the cross section at LHC energies A. J. Baltz, Phys. Rev. C 80, 034901
- ☐ Map the EM field produced in heavy-ion collisions
 - ❖ Larger Lorentz-boost factor w.r.t RHIC
 - ❖ Maximum electric field reached 30 times larger than at RHIC

Vector meson (VM) photoproduction

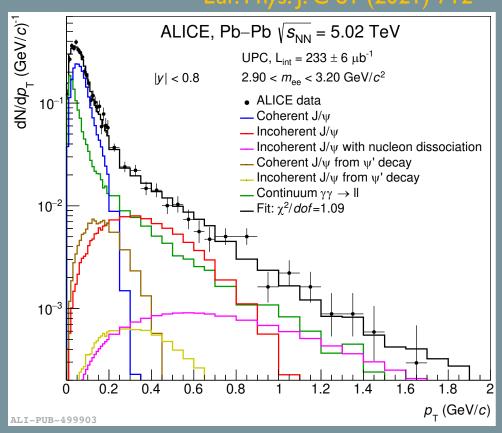


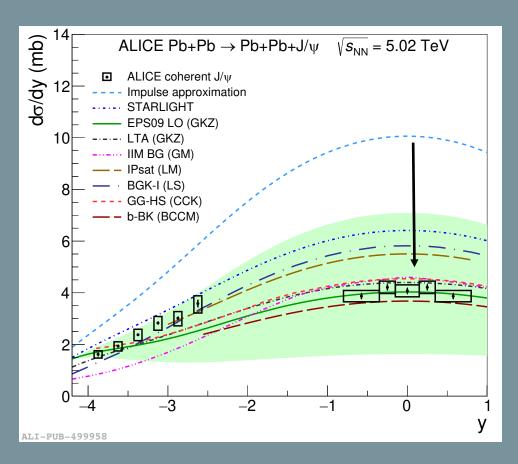
- ☐ Photon fluctuates into a quark-antiquark pair
- \square Production of a very low p_T vector meson (for coherent process)
- ☐ Gives access to gluon distributions in nuclei at low Bjorken-x


$$x_{\pm} = \frac{m_{J/\Psi}}{\sqrt{s_{NN}}} e^{(\pm y)}$$

 $10^{-5} < x < 10^{-2}$ at LHC energies

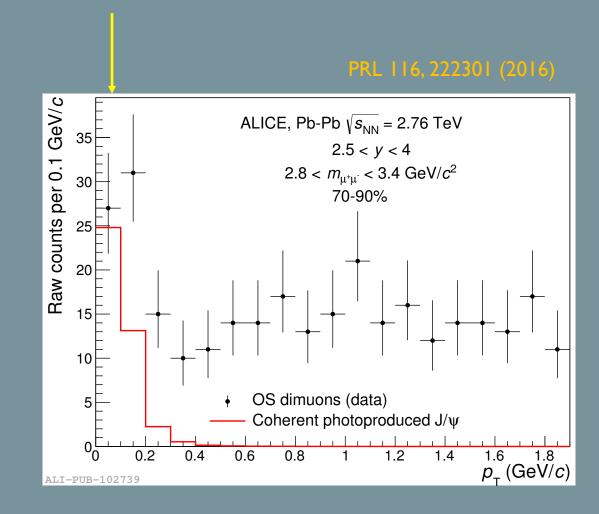
- ☐ Coherent photoproduction of VM
 - % couples coherently to all nucleons
 - $< p_T > J/\Psi \sim 60 \text{ MeV}$
 - Usually no breaking of target nucleus


- ☐ Incoherent photoproduction of VM
 - γ couples to a nucleon
 - $<p_T>J/\Psi$ ~ 500 MeV
 - Usually target nucleus breaks



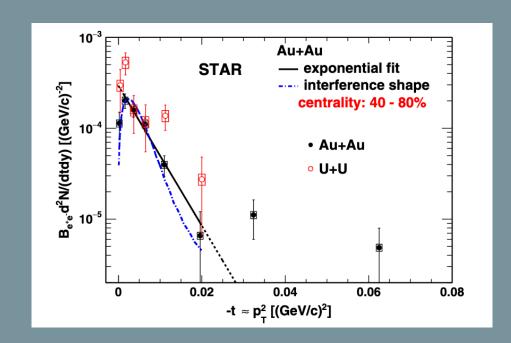
Results from photon induced processes in UPC

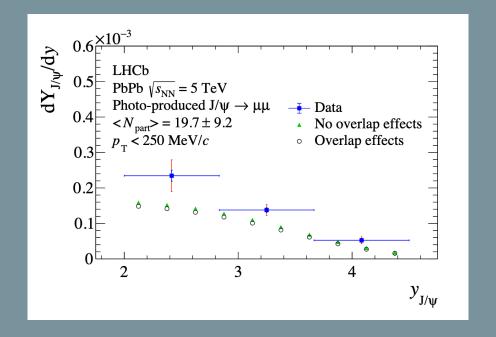
Eur. Phys. J. C 81 (2021) 712



- \square Nuclear gluon shadowing of $S_{Pb} = 0.64 \pm 0.04$ for Bjorken- $x \sim 10^{-3}$
- ☐ Provides important constraints to initial state of HIC

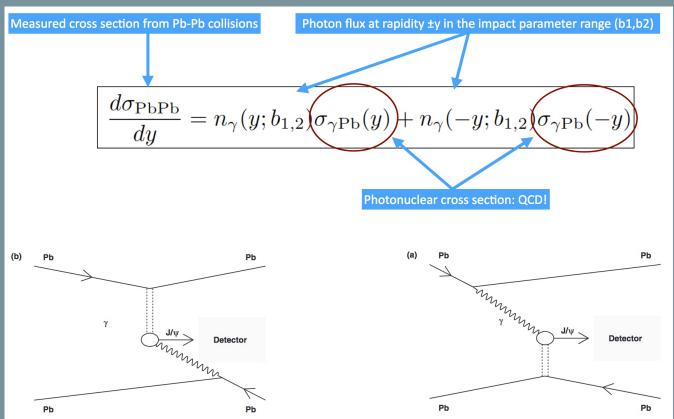
First observation of VM photoproduction in Pb-Pb collisions with nuclear overlap


- □ Very low- p_T J/ ψ excess in peripheral Pb–Pb collisions first measured in ALICE at forward y and $\sqrt{s_{NN}}$ = 2.76 TeV
 - > Interpreted as coherent photoproduction
 - Significance: 5.4σ (70-90%), 3.4σ (50-70%), 1.4σ (30-50%)



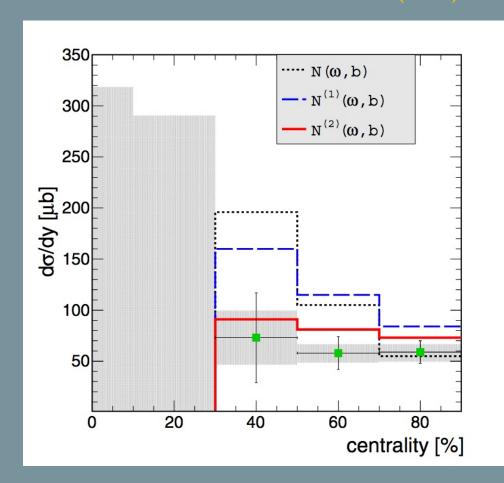
First observation of VM photoproduction in A-A collisions with nuclear overlap

- ☐ Similar observation by STAR Collaboration at lower energy in U–U and Au–Au collisions (PRL 123, 132302 (2019))
 - \triangleright First measurement of the t-dependence of the J/ ψ excess
 - Supports also photoproduction origin
- \square Observation confirmed in Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV by LHCb (PRC 105 (2022) L032201)
 - $\triangleright p_T$ and y-differential J/ψ excess yield measurement



VM photoproduction in heavy-ion collisions with nuclear overlap

- ☐ Theoretical challenges:
 - Survival of coherence condition for a broken nucleus? Only spectator nucleons participating to coherence?
- ☐ A potential new probe of charmonium color screening in the QGP?
- A novel way to access σ_{gPb} when combined to UPC measurement? (see J.G. Contreras, Phys. Rev. C 96, 015203 (2017))
 - → Need to understand time ordering of the interaction and theoretical open questions related to the treatment of the nuclear overlap

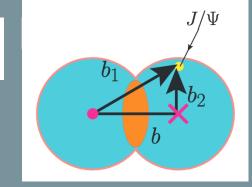


First theoretical approches developed since 2016 based on UPC-like models with modified photon flux and/or modified photonuclear cross section to account for overlap

First theoretical developments to describe VM photoproduction in Pb-Pb collisions with nuclear overlap

M. Klusek-Gawenda, PRC 93, 044912 (2016)

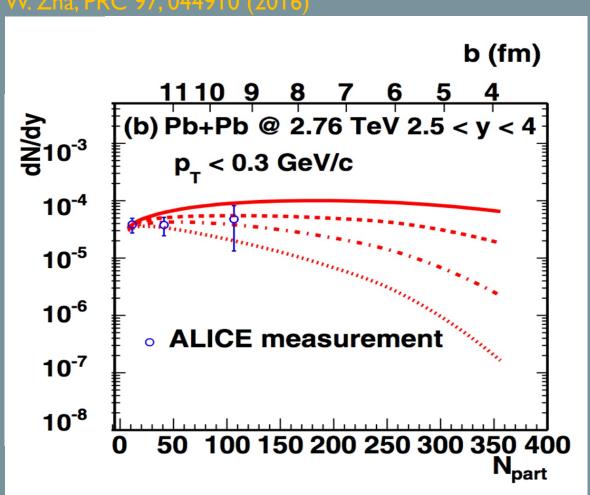
Equivalent photon approximation + vector dominance model


- Standard photon flux (UPC)
- Effective photon flux (considering geometrical constraints for the photon to reach the nucleus medium)

$$N^{(1)}(\omega_1, b) = \int N(\omega_1, b_1) \frac{\theta(R_A - b_2)}{\pi R_A^2} d^2b_1$$

Effective photon flux (considering photons reaching the spectator nucleon region only)

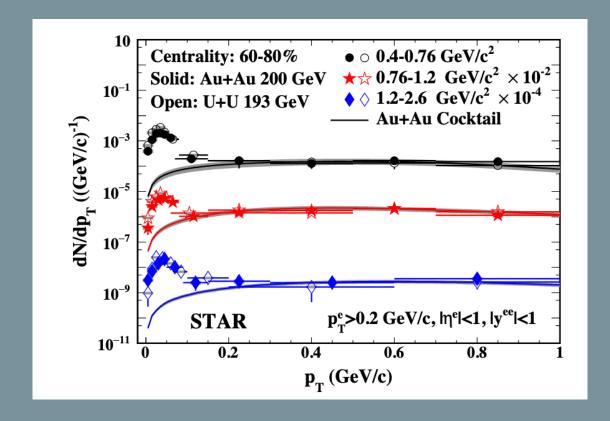
$$N^{(2)}(\omega_1, b) = \int N(\omega_1, b_1) \frac{\theta(R_A - b_2) \times \theta(b_1 - R_A)}{\pi R_A^2} d^2b_1$$


- ALICE data (Pb-Pb, $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$)
- ALICE syst. uncertainties

First theoretical developments to describe VM photoproduction in Pb-Pb collisions with nuclear overlap

☐ Strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions between photon and pomeron:

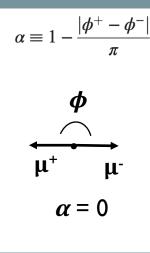
```
Nucleus (\gamma emitter) – Nucleus (pomeron emitter)
– N + N |
-- N + S
         Nucleus (\gamma emitter) – Spectator (pomeron emitter)
         Spectator (\gamma emitter) – Nucleus (pomeron emitter)
         Spectator (\gamma emitter) – Spectator (pomeron emitter)
```


- ☐ ALICE Run 1 data consistent with all 4 scenarios within uncertainties
- ☐ Need more precise data and measurement towards most central collisions (challenging!) to constrain theoretical models

Dilepton production via $\gamma\gamma$ interaction in heavy-ion collisions with nuclear overlap

STAR Collaboration, PRL 121, 132301 (2018)

- □ Very low- p_T dielectron excess observed by STAR, at midrapidity for 0.4 < $m_{e^+e^-}$ < 2.6 GeV/ c^2 in Au–Au and U–U collisions (centrality 60-80%)
 - Excess compatible with expectations from photonphoton interaction processes, but p_T^2 distribution not reproduced
 - \triangleright p_T broadening may indicate the possible existence of a strong magnetic field trapped in a conducting QGP



Dilepton production via $\gamma\gamma$ interaction in heavy-ion collisions with nuclear overlap

Observation by ATLAS of centrality-dependent acoplanarity for muon pairs produced via $\gamma\gamma$ scattering in hadronic Pb–Pb collisions (FRL 121, 212301 (2018)), for $4 < m_{\mu+\mu-} < 45$ GeV/c²

- Originally interpreted as a sign of em. scattering of the muons with a hot and dense medium.
- Inclusion of a b-dependence of photon- k_T distribution in QED calculations permits now to reproduce both STAR and ATLAS data (without need for medium induced or final state effects)

M. Klusek-Gawenda, J. Phys. Lett. B 814 (2021) 136114

New investigations from ALICE of photon induced processes in Pb-Pb collisions with nuclear overlap

new

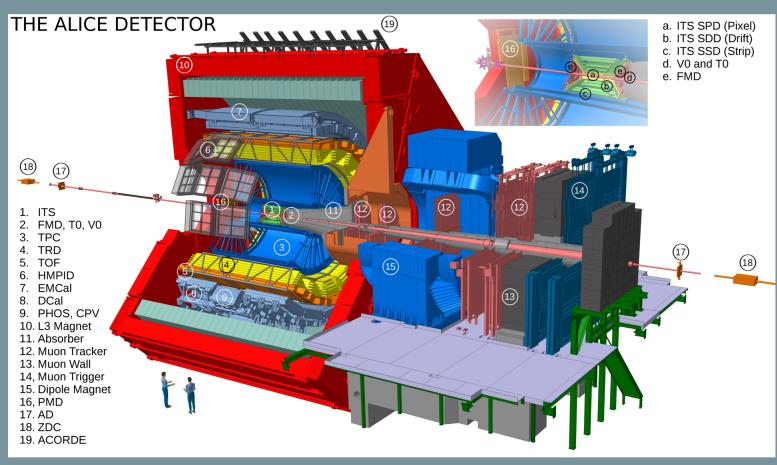
First measurement of a very low- p_T dielectron excess at low invariant mass $(0.4 < m_{e^+e^-} < 2.7 \text{ GeV/c}^2)$ at the LHC in hadronic Pb–Pb collisions

new

Coherent J/ ψ photoproduction cross section measured towards most central Pb–Pb collisions ($\sqrt{s_{NN}}$ = 5.02 TeV) at forward-y (5 σ significance in 30-50%!)

new

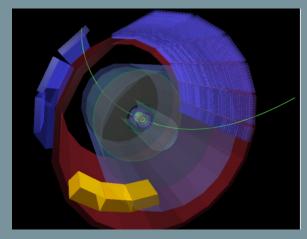
First p_T -differential measurement of the coherent J/ ψ photoproduction cross section in peripheral Pb–Pb collisions at mid-y and $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$


The ALICE apparatus (Run 2)

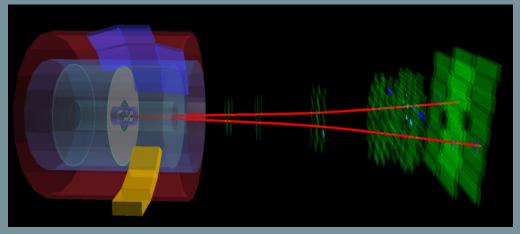
Data sample: 2015+2018 Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV (full Run 2 stat.)

Central barrel: |y| < 0.9low mass dielectrons $J/\Psi \rightarrow e^+e^-$

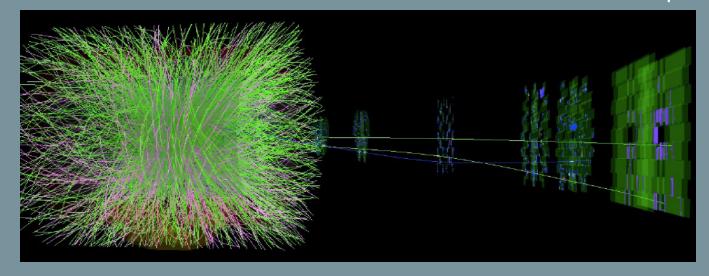
ITS: tracking
TPC: tracking, PID
TOF: PID


Muon spectrometer: 2.5 < y < 4 $J/\Psi \rightarrow \mu^{+}\mu^{-}$

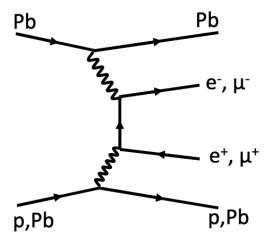
Muon tracker: tracking Muon trigger: triggering


ITS: vertex reconstruction, ZDC: background rejection V0 scintillators: triggering, centrality determination, background rejection

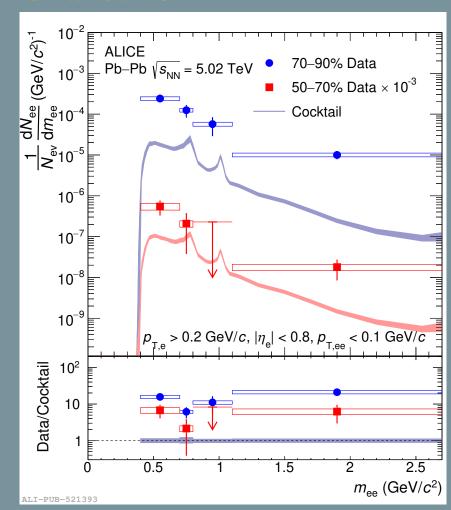
Event display: UPC events versus hadronic events



UPC event in the central barrel

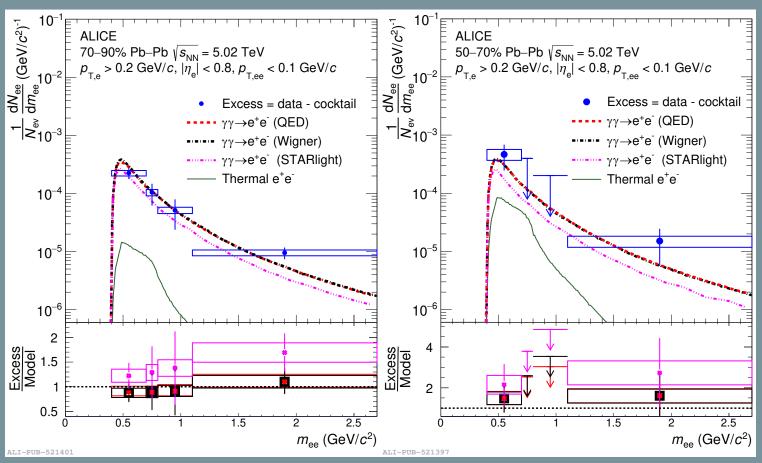

UPC event in the muon spectrometer

Pb-Pb hadronic event


First measurement of a very low-p_T dielectron excess at low invariant mass in hadronic Pb-Pb collisions

$\gamma\gamma \rightarrow e^+e^-$ production in Pb-Pb collisions with nuclear overlap

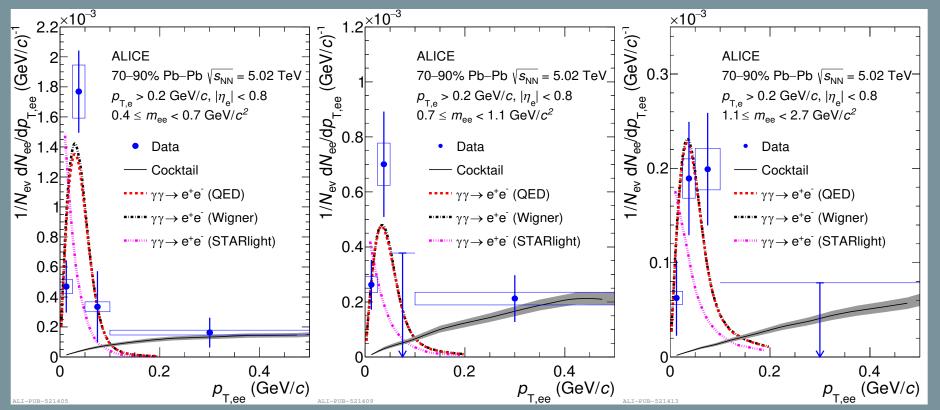
arXiv:2204.11732



- First measurement at LHC of a dilepton excess at very low- p_T (< 0.1 GeV/c) for 0.4 < $m_{\rm e+e-}$ < 2.6 GeV/c² in peripheral Pb–Pb collisions
- Corrected dielectron invariant mass distribution in centrality 50-70% and 70-90%, for $|\eta_{\rm e}|$ < 0.8 and $p_{\rm T,ee}$ < 0.1 GeV/c
 - ➤ Data cannot be described by cocktail of e⁺e⁻ expected hadronic sources
 - > Significance of the excess larger in most peripheral events

$\gamma\gamma\rightarrow e^+e^-$ production in Pb-Pb collisions with nuclear overlap

arXiv:2204.11732

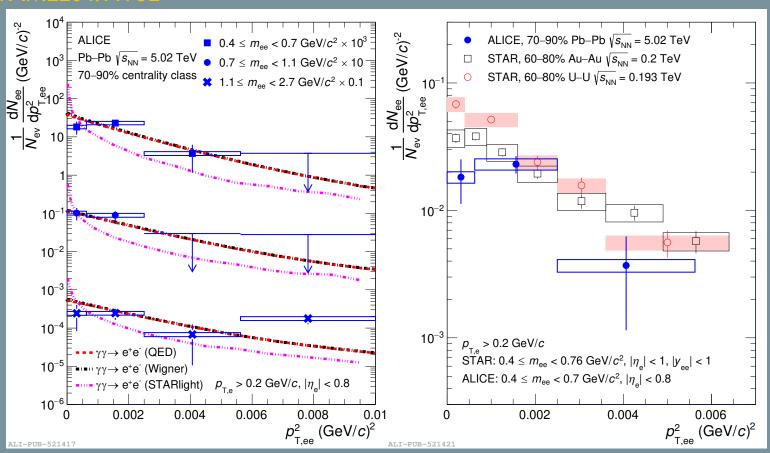

- QED: W. Zha et al., Phys. Lett. B 800 (2020) 135089, J. D. Brandenburg et al., Eur. Phys. J. A 57 (2021) 299 Wigner: M. Klusek-Gawenda et al., Phys. Lett. B. 814 (2021) 136114
- STARlight: S.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258, S.R. Klein, Phys. Rev. C. 97 (2018) 054903

- ☐ Mass distribution of the e^+e^- excess $(p_T < 0.1 \text{ GeV/c})$ after background subtraction from known hadronic sources
- ☐ No significant centrality dependence
- At $p_{T,ee}$ < 0.1 GeV/c, thermal radiation from medium is expected to be one order of magnitude smaller than the observed excess. Also different p_T shape and centrality dependence
- ☐ Ratio excess/model compatible with unity within total uncertainties (although STARlight predictions further away from data)

$\gamma\gamma\rightarrow e^+e^-$ production in Pb-Pb collisions with nuclear overlap

arXiv:2204.11732

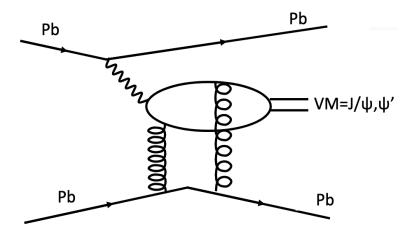
QED:


- W. Zha *et al.*, Phys. Lett. B 800 (2020) 135089
- J. D. Brandenburg *et al.*, Eur. Phys. J
- 4 57 (2021) 299
- Wigner:
- M. Klusek-Gawenda et al., Phys.
- Lett. B. 814 (2021) | 136114
- STARlight:
- o.R. Klein *et al.*, Comput. Phy
- Commun, 212 (2017) 258
- S.R. Klein, Phys. Rev. C. 97 (2018) 154903

- \square Clear peak observed at low p_{Tee} in 70-90%, for three invariant mass ranges
- \Box Data described by $\gamma\gamma$ interaction models including the b-dependence of the photon- k_T distribution (QED, Wigner)
- ☐ STARlight disfavored by data

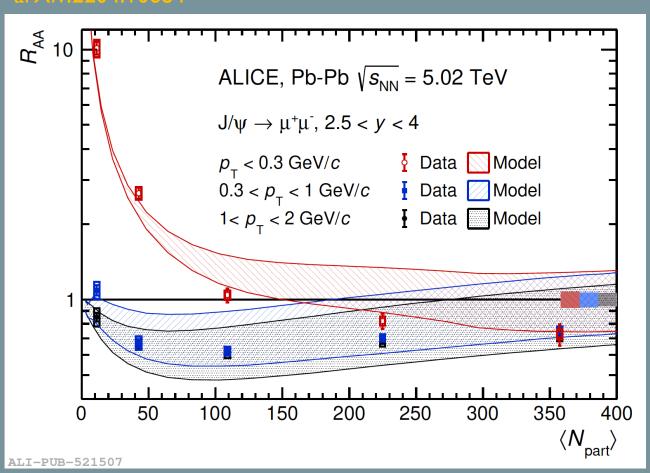
$\gamma\gamma \rightarrow e^+e^-$ production in Pb-Pb collisions with nuclear overlap

arXiv:2204.11732


- p_T^2 distribution of the excess after subtracting the hadronic cocktail
- From comparison with models: p_T broadening observed in HIC originates predominantly from initial EM field strength which varies significantly with b
- Similar p_T^2 spectrum for ALICE and STAR peripheral events despite different c.m.s energies, Z of nuclei

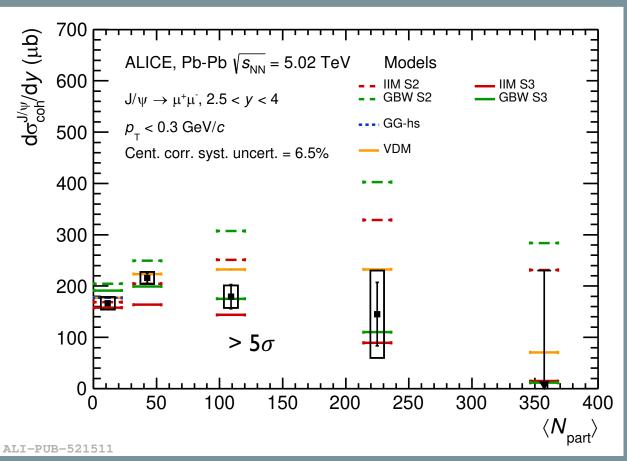
QED: W. Zha et al., Phys. Lett. B 800 (2020) 135089, J. D. Brandenburg et al., Eur. Phys. J. A 57 (2021) 299 Wigner: M. Klusek-Gawenda et al., Phys. Lett. B. 814 (2021) 136114

STARlight: S.R. Klein et al., Comput. Phys. Commun. 212 (2017) 258, S.R. Klein, Phys. Rev. C. 97 (2018) 054903



Coherent J/ ψ photoproduction cross section measured towards most central Pb-Pb collisions ($\sqrt{s_{NN}}$ = 5.02 TeV) at forward rapidity

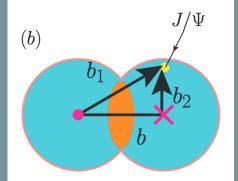
arXiv:2204.10684


$$R_{AA} = \frac{Y_{J/\psi}^{Pb-Pb}}{\langle T_{AA} \rangle \sigma_{J/\psi}^{pp}}$$

- □ J/ψ R_{AA} for p_T < 0.3 GeV/c significantly larger than in 1 < p_T < 2 GeV/c where hadroproduction dominates (except in most central events)
- □ Hint for incoherent photoproduction in 70-90% for $0.3 < p_T < 1$ GeV/c (~2 σ deviation w.r.t $1 < p_T < 2$ GeV/c)
- Data well described by a model including hot medium effects on J/ψ production (primordial J/ψ survival, regeneration)+ J/ψ photoproduction (p_T < 0.3 GeV/c). QGP effects on photoproduced J/ψ are also considered

W. Shi et al., Phys. Lett. B 777 (2018) 399-405

arXiv:2204.10684

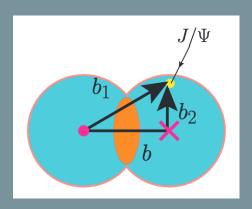

Centrality (70-90%) (50-70%) (30-50%) (10-30%)

Caveat: No normalization to the centrality interval width!

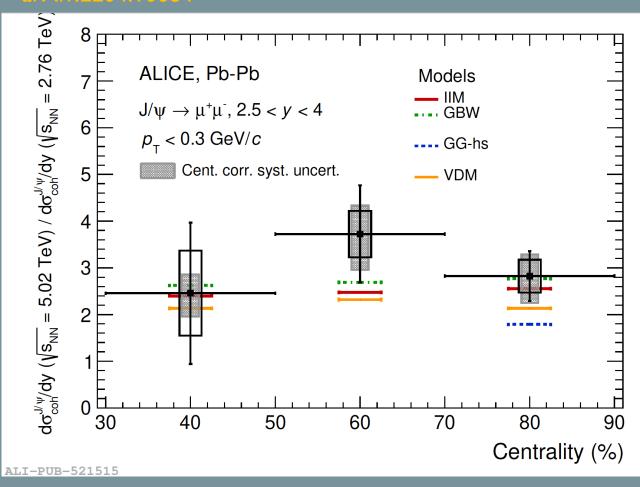
 \Box No centrality dependence of the coherent J/ ψ photoproduction cross section within uncertainties

GG-hs: J. Cepila et al., Phys. Rev. C. 97 (2018) 024901

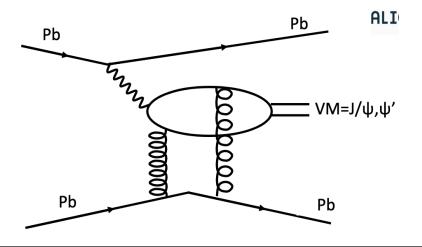
- γ flux with constraints on impact parameter range VDM: M. Klusek-Gawenda et al., Phys. Lett. B. 790 (2019) 339
- γ flux: only photons reaching the spectator region are considered [fixed area]
- photonuclear cross section unmodified IIM/GBW: M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 116013
- γ flux: only photons reaching the spectator region are considered [b-dependent area]
- S2: photonuclear cross section unmodified
- S3: photonuclear cross section modified (exclusion of overlap region)

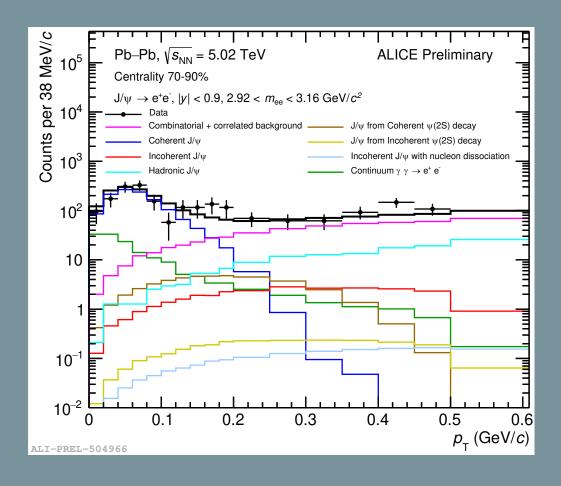

(0-10%)

arXiv:2204.10684

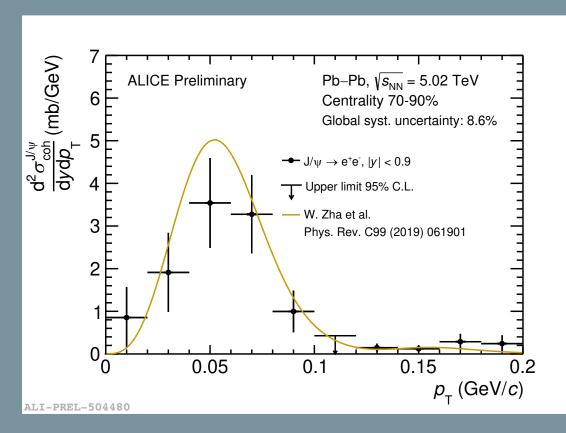

- \Box No centrality dependence of the coherent J/ ψ photoproduction cross section within uncertainties
- \Box Models with either a modification of the γ flux (VDM) or a modification of the γ flux + photonuclear cross section (IIM/GBW S3) describe semicentral data

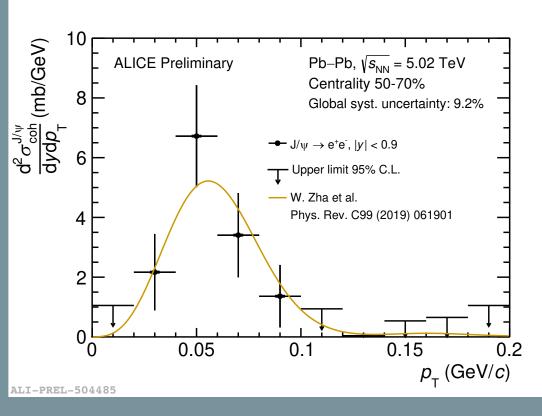
Centrality (70-90%) (50-70%) (30-50%) (10-30%) (0-10%) Caveat: No normalization to the centrality interval width!


arXiv:2204.10684

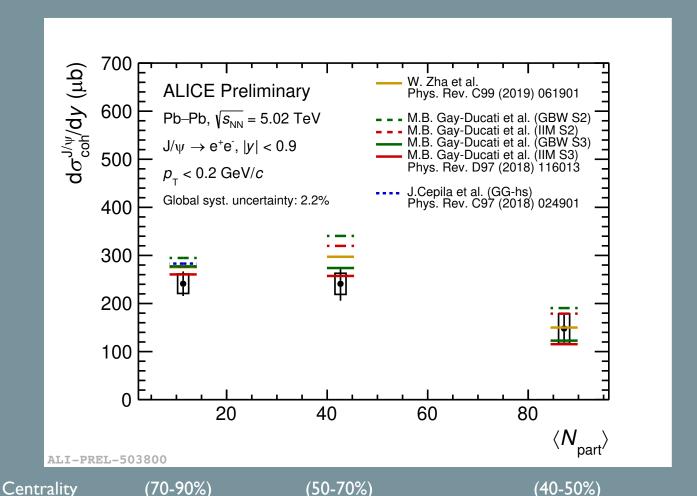

- \Box J/ ψ photoproduction cross section increases with the c.m.s energy and doesn't depend on the centrality
- □ VDM and IIM/GBW models reproduce fairly well the cross section ratio in the three centrality intervals

First p_T -differential measurement of the coherent J/ ψ photoproduction cross section in peripheral Pb–Pb collisions at midrapidity and $\sqrt{s_{NN}} = 5.02 \text{ TeV}$



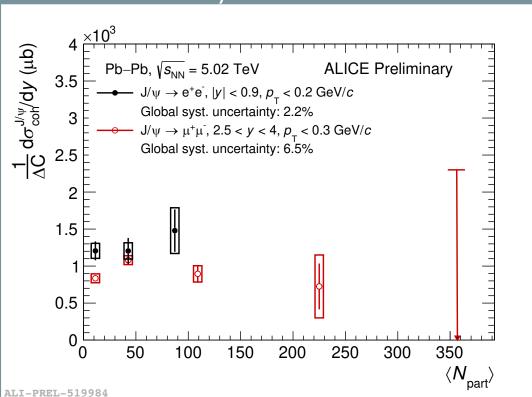


- Coherent J/ψ yield measured using an unbinned (m_{ee}, p_T) likelihood fit
- \Box Photoproduced J/ ψ components obtained from STARlight

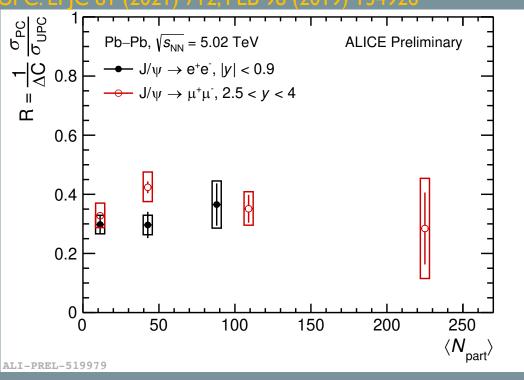


- $\Box p_T$ -differential J/ ψ photoproduction cross section measured in 50-70% and 70-90% at mid-y
- \Box p_T shape reproduced by model including modified photon flux and photonuclear cross section to account for the overlap (impact from overlap however limited in peripheral event). N+S scenario (with shadowing inc.)

W. Zha et al., Phys. Rev. C99 (2019) 061901


- \Box No centrality dependence of the coherent J/ψ photoproduction cross section within uncertainties
- □ Same models (GG-hs, GBW/IIM) reproduce at the same time the order of magnitude of the cross section at midrapidity and forward rapidity
- \Box Current precision in semicentral collisions do not permit to distinguish between models with modifications of γ flux only, or models with modification of γ flux + photonuclear cross section

Caveat: No normalization to the centrality interval width!

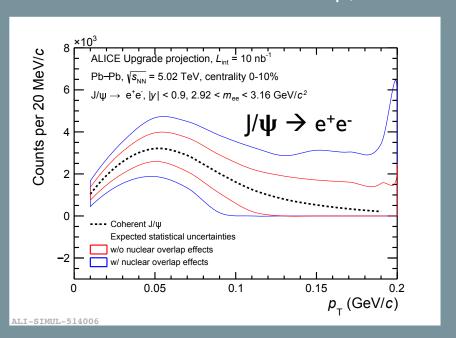

J/ψ photoproduction in Pb-Pb collisions with nuclear overlap (mid-y and forward-y comparison + comparison to UPC)

ΔC: width of centrality interval

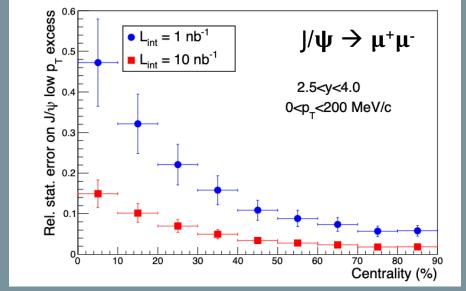
°C: arXiv:2204.10684 JPC: EPIC 81 (2021) 712, PLB 98 (2019) 134926

- \Box Larger J/ ψ photoproduction cross section at mid-y than at forward-y (as expected from models). No strong centrality dependence at both rapidities.
- \Box J/ ψ photoproduction ratio in Pb–Pb to UPC (in the same rapidity window) \rightarrow similar ratio for mid-y and forward-y.
 - \succ Ratio flat with centrality ightarrow no evidence for a decrease of $\sigma_{ extsf{PC}}$ because of the overlap or medium effects.

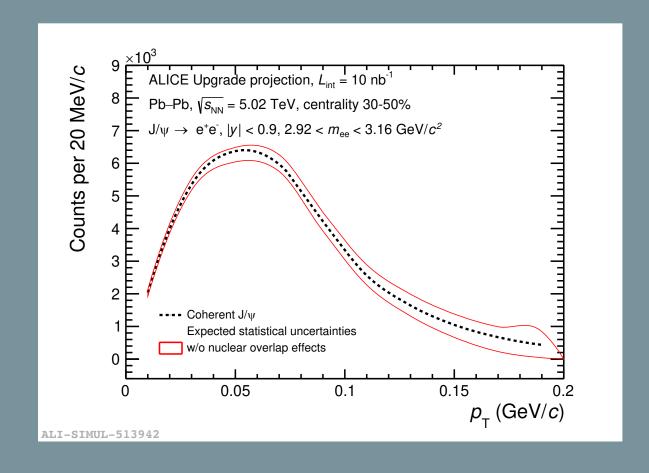
Conclusion

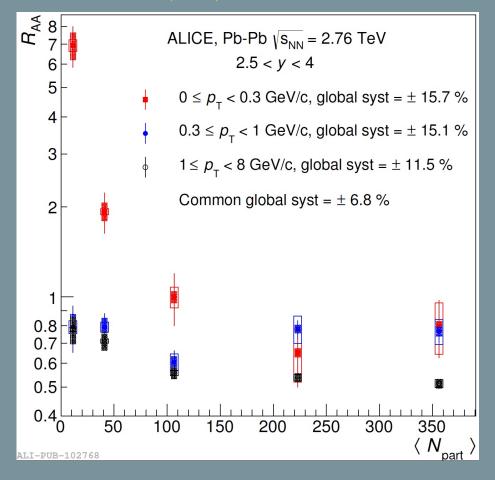

- \Box First measurement of photoproduced dielectron pair at LHC for low $m_{e^+e^-}$ in peripheral Pb–Pb collisions
 - \triangleright Reproduced by $\gamma\gamma$ interaction models including the b-dependence of the photon- k_T distribution
 - > Very little room left so far for medium induced effects (!)

- \Box J/ ψ photoproduction cross section measured towards most central Pb–Pb collisions at forward-y and towards semicentral collisions at mid-y.
 - \triangleright First p_T -differential measurement at mid-y
 - \triangleright UPC-like models including either a modification of the γ flux or a modification of the γ flux + photonuclear cross section to account for the nuclear overlap can describe the semicentral data


Outlook

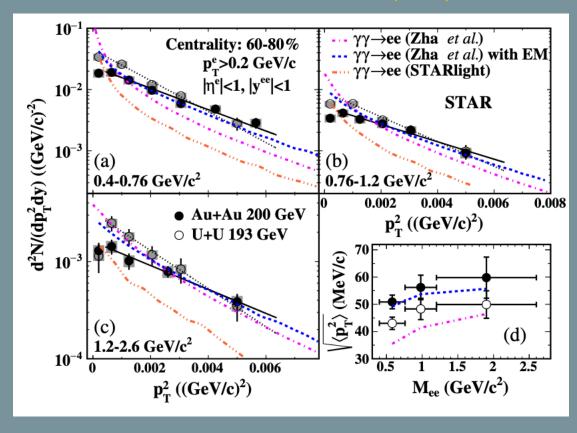
- Perspectives for Run 3 + 4: $L_{\text{int}} \sim 10 \text{ nb}^{-1}$ (increase of the stat. by \sim factor 10 at forward-y and few 100 (MB events) at mid-y Photoproduced $1/\psi$:
 - Significant signal at both mid- and forward-y in 0-10% centrality range can be expected
 - Opportunity to look to other observables: polarization, flow, y-differential σ + other quarkonium states
 - Precise measurement of the p_T -differential cross section at mid-y for centrality > 10%



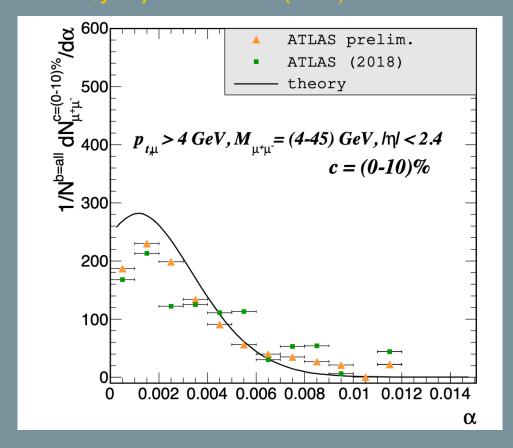

- Dileptons from photon-photon interaction:
 - High precision measurement of $p_{T,ee}$
 - Acoplanarity measurement, differential measurement as a function of EP or rapidity gap between e⁺ and e⁻ L. Massacrier ALICE investigates photon induced processes in Pb–Pb collisions with nuclear overlap CERN seminar, 25th Oct. 2022, CERN



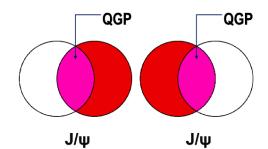
PRL 116, 222301 (2016)

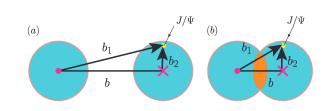


STAR Collaboration, PRL 123, 132302 (2019)

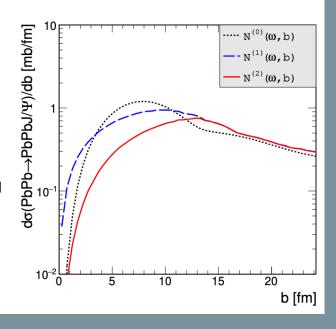



STAR Collaboration, PRL 121, 132301 (2018)


M. Klusek-Gawenda, I. Phys. Lett. B 814 (2021) 136114


M. Klusek-Gawenda, PRC 93, 044912 (2016), from presentation of M. Klusek-Gawenda at HF2022 workshop

Impact parameter space


 J/ψ photoproduction for (a) ultraperipheral and (b) central heavy ion collisions.

The inclusion of the absorption effect by modifying effective photon fluxes in the impact parameter space.

$$N^{(1)}(\omega_1,b) = \int N(\omega_1,b_1) \frac{\theta(R_A - (|\mathbf{b}_1 - \mathbf{b}|))}{\pi R_A^2} d^2b_1$$

$$N^{(2)}(\omega_1,b) = \int N(\omega_1,b_1) \frac{\theta(R_A - (|\mathbf{b}_1 - \mathbf{b}|))(b_1 - R_A)}{\pi R_A^2} d^2b_1$$

$$\sigma(N^{(0)}, \mathit{UPC}) = \sigma(N^{(1)}, \mathit{UPC}) = \sigma(N^{(2)}, \mathit{UPC})$$

M. Gay Ducati et al., Phys. Rev. D. 97 (2018) 116013

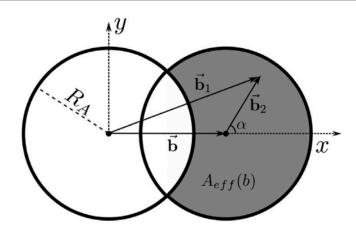


FIG. 2. Schematic drawing used in the construction of the effective photon flux.

$$N^{\text{eff}}(\omega, b) = \frac{1}{A_{\text{eff}}(b)} \int d^2b_1 N(\omega, b_1) \theta(R_A - b_2) \theta(b_1 - R_A),$$
(12)

where

$$A_{\rm eff}(b) = R_A^2 \left[\pi - 2 {\rm cos}^{-1} \left(\frac{b}{2R_A} \right) \right] + \frac{b}{2} \sqrt{4R_A^2 - b^2}.$$