Higgs total width at the ATLAS experiment

Rafael Coelho Lopes de Sá on behalf of the ATLAS Collaboration

UMassAmherst

CERN Seminar

Nov 15th, 2022

The Higgs boson

UMassAmherst

The Higgs Boson was discovered in 2012 by ATLAS and CMS

Characterization of the Higgs boson properties

0 110

120

130

140

150

m₄₁ [GeV]

160

This talk will focus on results using the $H \rightarrow ZZ$ decay channel

The Higgs boson spin-parity

Spin-parity nature of the Higgs boson has been well established with Run 1 measurements

The $J^P = 0^+$ nature of the Higgs boson is greatly favored over other hypothesis with spin 2 or negative parity.

Spin 1 hypothesis excluded by the Landau-Yang theorem.

This result will be explored in the measurement presented today.

The Higgs mass

Increasingly precise measurement of the Higgs mass with Run 2 data

 $m_H = 124.99 \pm 0.18(\text{stat}) \pm 0.04(\text{syst}) \text{ GeV}$

ATLAS Collaboration, Submitted to PLB, arXiv:2207.00320

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	± 28
Electron energy scale	± 19
Signal-process theory	± 14

ATLAS Collaboration, MUON-2022-01

Measurement with very small systematic uncertainty. Excellent work from the object working groups.

The Higgs width

On-shell interference and Γ_H

In 2013, L. Dixon and Y. Li [3] pointed out there is a large interference between $H \rightarrow \gamma \gamma$ and the continuous $\gamma \gamma$ that can be used to probe the Higgs boson width Γ_H

The interference creates a shift in the $m_{\gamma\gamma}$ peak with respect to m_H .

UMassAmherst

The shift can be used probe Γ_H experimentally by comparing the $m_{\gamma\gamma}$ and $m_{4\ell}$ peaks.

A short note describing an experimental implementation of the method was made public in 2016: ATLAS Collaboration, ATL-PHYS-PUB-2016-009

This method should be able to constrain $\Gamma_H / \Gamma_H^{SM} < O(100)$

Off-shell Higgs production and Γ_H

UMassAmherst

In 2012, N. Kauer and G. Passarino [4] pointed out that, despite the small total width, the off-shell Higgs production cross section in $H \rightarrow VV$ is not small due threshold enhancements

Off-shell Higgs production and Γ_H

Phys. Lett. B 786 (2018) 223

[4] JHEP 08 (2012) 116
[5] Phys. Rev. D88 (2013) 054024
[6] JHEP 04 (2014) 60

7

Nat. Phys. 18 (2022) 1329

Signal-background interference

In the off-shell region, the interference (I) between the two components S and B is large and destructive (to preserve unitarity at high energies).

ggF off-shell Higgs production

The Γ_H result presented today uses the measurement of the off-shell Higgs production with both $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ decay channels

 $\sum_{g \neq Q} \prod_{i,b} \prod_{V} \prod_{V} \prod_{V} \prod_{V}$

 $N_{gg \to (H^*) \to ZZ}(\mu_{\text{off-shell}}) = (\mu_{\text{off-shell}} - \sqrt{\mu_{\text{off-shell}}})N_S + \sqrt{\mu_{\text{off-shell}}}N_{SBI} + (1 - \sqrt{\mu_{\text{off-shell}}})N_B$

The description is done as a function of S, SBI, and B because of the inefficiencies in generating interference-only MC samples. Modern developments motivated by VBF-type production have greatly improved the situation [7].

EW off-shell Higgs production

Non-negligible interference between all the components (VBF, t-channel, VH, VBS)

$$\mu_{\text{off-shell}} = \kappa_{V,\text{off-shell}}^4$$

EW samples are always produced as full process (SBI^{EW}), including regions with $m_{4\ell} \simeq 125$ GeV (t-channel Higgs process renders separation impossible).

$$N_{EW}(\mu_{off-shell}) = \begin{bmatrix} \mu_{off-shell} \\ \sqrt{\mu_{off-shell}} \end{bmatrix}^{T} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 10 & \sqrt{10} & 1 \end{bmatrix}^{-1} \begin{bmatrix} SBI_{0}^{EW} \\ SBI_{1}^{EW} \\ SBI_{10}^{EW} \end{bmatrix}$$

UMassAmherst

Three different values of $\mu_{\text{off-shell}}$ are used (0,1,10)

Off-shell Higgs and global fits

ATLAS Collaboration, Nature 607, pages 52-59 (2022)

$$\Gamma_H = \Gamma_H^{\rm SM} \frac{\sum_j B_j^{\rm SM} \kappa_j^2}{(1 - B_i - B_u)}$$

 B_u (undetected decays of the Higgs boson) scales all observed cross section and we only measure ratios in the LHC.

UMassAmherst

Constraint on B_u are obtained by requiring $\kappa_V \leq 1$.

Including off-shell Higgs measurement, limits can be obtained without these hypotheses since off-shell production does not depend on Γ_H

Off-shell Higgs and global fits

Parameter value

 $\Gamma_H = \Gamma_H^{\rm SM} \frac{\sum_j B_j^{\rm SM} \kappa_j^2}{(1 - B_i - B_u)}$

UMassAmherst

 B_u (undetected decays of the Higgs boson) scales all observed cross section and we only measure ratios in the LHC.

Constraint on B_u are obtained by requiring $\kappa_V \leq 1$.

Including off-shell Higgs measurement, limits can be obtained without these hypotheses since off-shell production does not depend on Γ_H

The two hypotheses were used in the global fits performed with Run 1 data.

ATLAS Collaboration, Eur. Phys. J. C (2016) 76

Off-shell Higgs and EFT

[8] JETP Vol. 147 (3) (2015)[9] JHEP 1609 (2016) 123

Off-shell Higgs production can be used to probe EFT operators, in both signal and background diagrams.

UMassAmherst

- Processes probing higher energy scale $m_{ZZ} > m_H$.
- But low number of events because of reduced cross section.

As noted by A. Azatov, C. Grojean, A. Paul, and E. Salvioni [8] in 2015, off-shell production can break the degeneracy between operators that are indistinguishable with on-shell production

This degeneracy can also be broken by $t\bar{t}H$ and boosted Higgs production, as noted by the same authors in [9].

Off-shell Higgs and new light states

ATLAS EXPERIMENT

- The Higgs width interpretation relies on the assumption that the relationship between the Higgs onshell and off-shell couplings is given by the SM evolution.
- New BSM light states could break this hypothesis.
- However, new light states would also create new mass thresholds that can be probed with off-shell production.
- In 2018, D. Gonçalves, T. Han, and S. Mukhopadhyay [10] pointed out that off-shell Higgs production can be used to probe light, weakly-coupled BSM particles through new mass thresholds. Interesting searches for HL-LHC.

Run 2 ATLAS detector

UMassAmherst

The results presented today use the full Run 2 dataset (139 fb⁻¹) in both $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ decay channels. They supersede the previous 36 fb⁻¹ result.

 4ℓ channel \rightarrow single, double, and triple lepton trigger $2\ell 2\nu$ channel \rightarrow single lepton trigger

Event selection

4ℓ channel

 $ZZ \rightarrow 4\ell$ selection

2 same-flavor, opposite-charge lepton pairs Leading $p_T^{\text{lep}} > 20, 15, 10 \text{ GeV}$ $220 \le m_{4\ell} \le 2000 \text{ GeV}$ $180 \le m_{4\ell} \le 220 \text{ GeV} (\text{for CRs})$

$2\ell 2\nu$ channel

 $ZZ \rightarrow 2\ell 2\nu$ selection

1 same-flavor, opposite-charge lepton pair Leading $p_T^{\text{lep}} > 30,20 \text{ GeV}$ $76 < m_{\ell\ell} < 106 \text{ GeV}$ $E_T^{\text{miss}} > 120 \text{ GeV}$ Pair 12 defined as the pair with $m_{\ell\ell}$ closest to m_Z

UMassAmherst

$$50 \le m_{12} \le 106 \text{ GeV}$$

$$50 - \max(0, \frac{190 - m_{4\ell}}{2}) \le m_{34} \le 115 \text{ GeV}$$

background rejection cuts

 $3^{\rm rd}$ lepton veto $\Delta R_{\ell\ell} < 1.8$ $\Delta \phi(Z, E_T^{\rm miss}) > 2.5$ $\Delta \phi (\text{jet } p_T > 100 \text{ GeV}, E_T^{\text{miss}}) > 0.4$ $E_T^{\text{miss}} \text{ significance} > 10$ *b*-jet veto

Inclusive distributions

Event categorization

Jets are selected with $p_T > 30$ GeV and $|\eta| < 4.5$

1 jet mixed signal region

 $n_{
m jets} = 1$ and $|\eta_j| \ge 2.2$

EW signal region

 $n_{
m jets} \geq 2$ and $|\Delta \eta_{jj}| \geq 4.0$

Fractions in 4ℓ channel

Event categorization

Jets are selected with $p_T > 30$ GeV and $|\eta| < 4.5$

 $n_{
m jets} = 1$ and $|\eta_j| \ge 2.2$

 $n_{
m jets} \ge 2$ and $\Delta \eta_{jj} \! \ge \! 4.0$

Fractions in $2\ell 2\nu$ channel

Observable in the 4ℓ channel

- Previous versions of this analysis used analytical matrix element discriminants calculated without transfer functions, without PDFs, and with a rough approximation of the initial-state kinematics.
- This analysis uses a neural network version of the discriminant trained with reconstructed variables and the best higher-order MC simulations available for each process.

NN largely explores the $J_P = 0^+$ nature of the Higgs boson

UMassAmherst

 $O_{\rm NN}^{\rm ggF}$ also used for mixed region

Interference cannot be directly included as a category in the NN since it has no probabilistic interpretation (negative weights, not a probability).

Observable in the 4 ℓ channel

UMassAmherst

Events

Observable in the $2\ell 2\nu$ channel

Events

- The purity of off-shell Higgs production increases with m_{ZZ}
- The transverse mass is used as a proxy for the mass in the presence of neutrinos in the final state

$$(m_T^{ZZ})^2 = \left[\sqrt{m_Z^2 + \left(p_T^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_T^{\text{miss}}\right)^2}\right]^2 - \left|p_T^{\ell\ell} + \overline{E_T^{\text{miss}}}\right|^2$$

UMassAmherst

23

Observable in the $2\ell 2\nu$ channel

- The purity of off-shell Higgs production increases with m_{ZZ}
- The transverse mass is used as a proxy for the mass in the presence of neutrinos in the final state

$$(m_T^{ZZ})^2 = \left[\sqrt{m_Z^2 + \left(p_T^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_T^{\text{miss}}\right)^2}\right]^2 - \left|p_T^{\ell\ell} + \overline{E_T^{\text{miss}}}\right|^2$$

UMassAmherst

24

Signal and background modeling

The distribution of the observables in each channel is obtained from MC simulations

Process	MC generator	Description
ggF S, B, SBI	Sherpa v2.2.2	0+1 jets @ LO
EW SBI0, SBI1, SBI10	Madgraph5	LO
$q \overline{q} Z Z$	Sherpa v2.2.2	0+1 jets @ NLO, 2+3 jets @ LO
WZ	Sherpa v2.2.1	0+1 jets @ NLO, 2+3 jets @ LO

*subleading processes not included here

EW NLO corrections for $q\bar{q}ZZ$ calculated by S. Kallweit et al [11] are applied.

[11] JHEP 11 (2017) 120
[12] JHEP 07 (2016) 087
[13] Eur. Phys. J. C 74 (2014) 2866

Caola et al. *JHEP* 07 (2016) 087

UMassAmherst

ggF S, B, and SBI are scaled to NLO using the calculation by F. Caola et al. from 2016 [12]. An additional factor of 1.2×1.1 is used to approximate NNLO [13] and N³LO corrections.

Background normalization

The normalizations of the main background sources are determined by data

- 4 ℓ and 2 ℓ 2 ν channels: $\mu(q\bar{q}ZZ)$
- $2\ell 2\nu$ channel: $\mu(WZ)$, $\mu(Z + \text{jets})$, and non-resonant $\ell\ell \mu(e\mu)$ production (mostly $t\bar{t}$ and WW)

The ratios of observed yields in jet bins

 $\frac{\mu(q\bar{q}ZZ+1jet)}{\mu(q\bar{q}ZZ)}, \frac{\mu(q\bar{q}ZZ+(2+)jet)}{\mu(q\bar{q}ZZ)}, \frac{\mu(WZ+1jet)}{\mu(WZ)}, \frac{\mu(WZ+(2+)jet)}{\mu(WZ)}$

are also determined by data to improve the background description in the jet-binned signal regions.

Dedicated control regions are introduced to constrain each of the data-driven normalization factors.

Control regions

- Three $q\bar{q} \rightarrow ZZ$ control regions are defined in 4ℓ final state $180 \le m_{4\ell} \le 220 \text{ GeV}$ $n_{\text{iets}} = 0, 1, \ge 2$
- Several control regions targeting $2\ell 2\nu$ backgrounds. Selections based on the $2\ell 2\nu$ event selection

10 4-lepton production, CMS cuts, √s=13 TeV 10 → 4leptons 4leptons(cont) 10-'dm₄[fb/GeV] 10-10 10-6 10-7 100 200 2000 500 1000 m4[GeV]

UMassAmherst

One control region per floating normalization

Modeling uncertainties

- Scale variation in the NLO/LO k-factor are used as missing higher-order uncertainties for ggF S, SBI, and B processes.
- Additional higher-order uncertainties estimated by varying Sherpa **resummation** and **matching** scales in both $q\bar{q} \rightarrow ZZ$ and ggF processes.
- Higher-order QCD uncertainties in $q\bar{q} \rightarrow ZZ$ estimated by **renormalization** and **factorization** scale variations.
- EW NLO uncertainties in qq̄ → ZZ estimated with MATRIX (by M. Grazzini et al [14]) based on the difference between the multiplicative and additive schemes QCD + EW NLO corrections.
- Uncertainties on EW SBI processes are modeled through **renormalization** and **factorization** scale variations, and Pythia shower variations.

180 200 220

240 260

 $m_{4\ell}$ [GeV]

280 300 320

UMassAmherst

Caola et al. JHEP 07 (2016) 087

• Simultaneous fit in the six signal regions (4 ℓ and 2 ℓ 2 ν channels) and eight control regions.

+ 8 control regions

UMassAmherst

Correlated experimental and modeling uncertainties.

Normalization factor	Fitted value
$\mu_{ m qqZZ}$	1.11 ± 0.07
$\mu^{1j}_{ m qqZZ}$	0.90 ± 0.10
$\mu^{2j}_{ m qqZZ}$	0.88 ± 0.26
$\mu_{3\ell}$	1.06 ± 0.03
$\mu^{1j}_{3\ell}$	0.92 ± 0.10
$\mu^{2j}_{3\ell}$	0.75 ± 0.19
$\mu_{ m Zj}$	0.90 ± 0.19
$\mu_{e\mu}$	1.08 ± 0.09

UMassAmherst

 $\mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \kappa_{V,\text{off-shell}}^2 = \kappa_{V,\text{off-shell}}^4$

The interference creates the unorthodox shape of the test statistics $-2\ln(\lambda)$

Expected uncertainty on the signal strength does not scale with \sqrt{L}

> Asymptotic approximation, valid within 5-10%.

 $\mu_{\text{off-shell}}^{\text{ggF}} = \kappa_{g,\text{off-shell}}^2 \kappa_{V,\text{off-shell}}^2$ $\mu_{\text{off-shell}}^{\text{EW}} = \kappa_{V,\text{off-shell}}^4$

UMassAmherst

The interference creates the unorthodox shape of the test statistics $-2\ln(\lambda)$

Expected uncertainty on the signal strength does not scale with \sqrt{L}

Impact of systematic uncertainties

Measurement of $\mu_{off-shell}$ is not a measurement of a yield. Interference gives rise to two different values of $\mu_{off-shell}$ for a given yield.

There are yields for which there are no solutions (not considering nuisance parameters)

Systematic Uncertainties	$-2\ln\lambda(\mu_{\text{off-shell}}) = 4 \text{ crossing}$
Parton shower uncertainty for $ggZZ$ (normalisation)	2.26
Parton shower uncertainty for $ggZZ$ (shape)	2.29
NLO EW uncertainty for $qqZZ$	2.27
NLO QCD uncertainty for $ggZZ$	2.29
Parton shower uncertainty for $qqZZ$ (shape)	2.29
Jet energy scale and resolution uncertainty	2.26
All uncertainties	2.30

Double solution for $\mu_{\text{off-shell}}$ also makes the definition of systematic uncertainty impact via finite differences $\hat{\mu}(\hat{\alpha} + \delta \alpha) - \hat{\mu}(\hat{\alpha})$ unreliable.

Impact of systematics uncertainties given instead by the change in $-2\ln(\lambda) = 4$ crossing when the given uncertainty source is removed.

Comparison with previous result

xpected-Stat. only

2σ

5

 $\mu_{\text{off-shell}}$

Expected

Observed

Δ

3

2

····· Observed-Stat. only

New in this preliminary result

2In(\lambda)

10

8

6

n

14 ATLAS

12-13 TeV, 36.1 fb⁻¹

 $H^* \rightarrow ZZ \rightarrow 41,212v$

 $\mu_{\text{off-shell}}^{gg \rightarrow H^* \rightarrow ZZ} / \mu_{\text{off-shell}}^{\text{VBF } H^* \rightarrow ZZ} = 1$

 $36 \, {\rm fb}^{-1}$

- Increased integrated luminosity
- Optimized discriminant in the 4ℓ channel
- Improved description of modeling systematics

UMassAmherst

Separate results for ggF and EW production

On-shell measurement results

UMassAmherst

This is the on-shell only result. $\mu_{on-shell}$ is always floating when the on-shell / off-shell ratios are determined.

Off-shell/on-shell couplings

Joint off-shell $(4\ell + 2\ell 2\nu \text{ channel})$ and on-shell $(4\ell \text{ channel only})$ analysis

36

2σ

1σ

4.5 5

 $\mathsf{R}_{\mathsf{V}\mathsf{V}}$

4

Measurement of Γ_H

- Measured ratio $\Gamma_H / \Gamma_H^{\text{SM}} = 1.11^{+0.63}_{-0.60}$
- This corresponds to a measurement of the total Higgs boson width of

 $\Gamma_H = 4.6^{+2.6}_{-2.5} \text{ MeV} @ 68\% \text{ CL}.$

• Uncertainty quoted using asymptotic approximation.

Conclusions

- We presented a new measurement of the Higgs boson total width.
- The Higgs boson total width is probed via the measurement of the off-shell Higgs production in the $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ channels.
- We have evidence for the off-shell production of Higgs bosons. The background-only hypothesis is rejected at an observed significance of 3.2σ (2.4 σ expected).
- The measurement of the Higgs total width is

 $\Gamma_H = 4.6^{+2.6}_{-2.5}$ MeV @ 68% CL. (4.1^{+3.2}_{-3.5} MeV expected)

- Consistent with the recent CMS result $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV $(4.1^{+4.0}_{-3.5}$ MeV expected) [15], which uses 140 fb⁻¹ 4 ℓ on-shell + 78 fb⁻¹ 4 ℓ off-shell + 138 fb⁻¹ 2 ℓ 2 ν off-shell.
- Several new ideas can be explored with the off-shell Higgs measurement, including searches for new heavy and light BSM states.
- This is a preliminary result. Final results and new interpretations will be provided soon.