BIG SAR ANALYSIS READY DATA: REALISING THE ESA-DLR SENTINEL-1 NORMALISED RADAR BACKSCATTER PRODUCT

John Truckenbrodt ^a, Marco Wolsza ^b, Clément Albinet ^c, Antonio Valentino ^{c, d}, Anna Wendleder ^a, Jonas Eberle ^a, Katrin Molch ^a

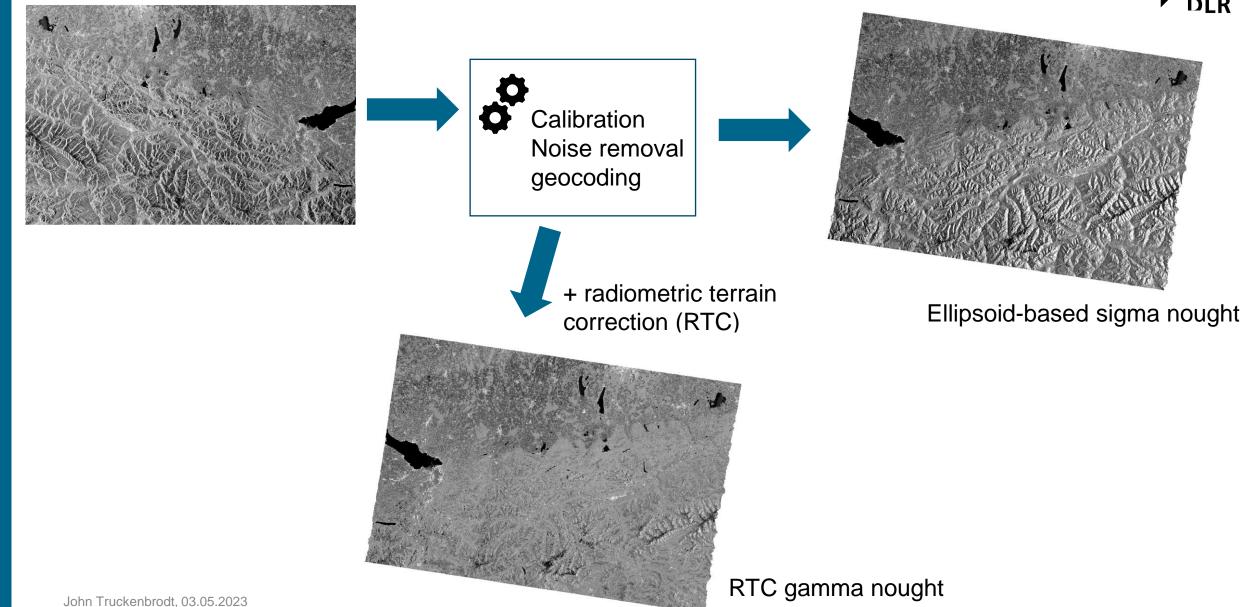
^a DLR, German Remote Sensing Data Centre, Oberpfaffenhofen, Germany

^b University of Jena, Department for Earth Observation, Jena, Germany

^c ESA ESRIN, Frascati, Italy

^d RHEA Group, Frascati, Italy

Sentinel-1



- Synthetic Aperture Radar (SAR) mission of the Copernicus programme
- Operated by ESA
- Free and open data policy
- Application examples:
 - Marine monitoring: ship traffic, ice, sea state
 - Land monitoring: flood mapping, ground deformation
- Revisit time: 12 days (6 with two satellites)
- Satellites:
 - Sentinel-1A: 2014-04-03 –
 - Sentinel-1B: 2016-04-25 2022-08-03
 - Sentinel-1C: 2023
- Total data volume as of Sept. 2022:
 - Ground Range Detected (GRD): 2 PB
 - Single Look Complex (SLC): 10 PB

SAR Image Processing

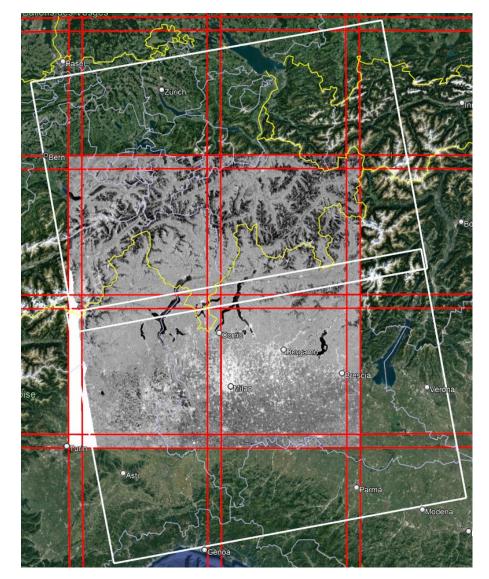
CEOS Analysis Ready Data

Current Product Family Specifications								
PFS	Туре	Version	Download	Metadata Spec	Last Updated			
Surface Reflectance	Optical	5.0	PDFIWord	A CARLAN	8 June 2020			
Surface Temperature	Optical	5.0	PDF Word		8 June 2020			
Normalised Radar Backscatter	Radar	5.5	PDF Word	XLSX	13 May 2022			
Polarimetric Radar	Radar	3.5	PDF Word	XLSX	13 May 2022			
Aquatic Reflectance	Optical	1.0	PDF Word		23 February 2022			
Ocean Radar Backscatter	Radar	1.0	PDF Word	XLSX	21 September 2022			
Nighttime Lights Surface Radiance	Optical	1.0	PDF Word		2 October 2022			

https://ceos.org/ard/

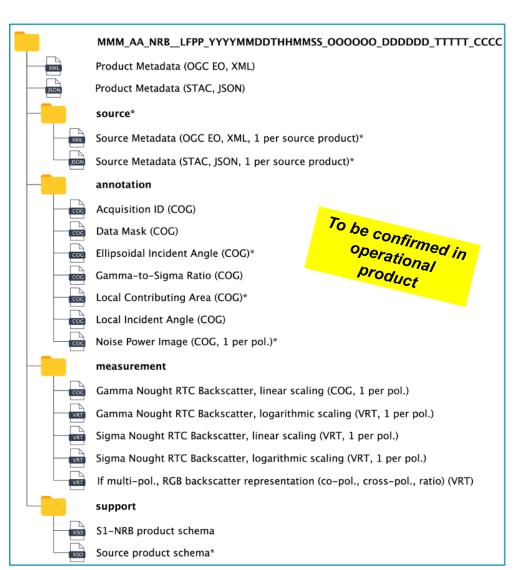
CEOS Analysis Ready Data

Under Development / Assessment


Product	CEOS-ARD Type	PFS Version	Agency	Mission(s)	Access (DOI)	Info	Self Assessment	Peer Review	Sample Products
Landsat L2 Provisional Aquatic Reflectance	Aquatic Reflectance	v1.0	USGS	Landsat 8, 9	TBA	Link	ТВА	TBA	Link
NovaSAR-1 RTC	Normalised Radar Backscatter	v5.5	CSIRO	NovaSAR-1	TBA	Link	Ongoing	TBA	ТВА
Resourcesat-2/2A	Surface Reflectance	v5.0	ISRO	Resourcesat-2, 2A	TBA	Link	Ongoing	TBA	TBA
RISAT-1A (EOS-04) NRB	Normalised Radar Backscatter	v5.5	I SR0	RISAT-1A (EOS-04)	TBA	TBA	ТВА	ТВА	ТВА
Sentinel-1 NRB	Normalised Radar Backscatter	v5.5	ESA	Sentinel-1 (A, B)	TBA	Link	ТВА	TBA	ТВА
Sentinel-1 ORB	Ocean Radar Backscatter	v1.0	ESA	Sentinel-1 (A, B)	TBA	TBA	ТВА	TBA	TBA

ESA-DLR NRB Product Characteristics

- Seamless mosaics of multiple source scenes
- Exact extent of Sentinel-2 grid cells (based on Military Grid Reference System MGRS)
- UTM projection (UPS over poles)
- 10 m spacing
- 100 km tile plus overlap:
 - 10980 * 10980 pixels
 - 109.8 * 109.8 km
- Cloud Optimized GeoTIFF (COG)
 - 512 * 512 tiling
 - Overview levels: 2, 4, 9, 18, 36
- "LERC_ZSTD" Raster Compression


https://sentinel.esa.int/web/sentinel/sentinel-1-ardnormalised-radar-backscatter-nrb-product

Product content

- Measurement: radiometrically terrain corrected (RTC) gamma nought (γ_T^0) backscatter per polarisation
- Ancillary Data:
 - Acquisition ID mask: source scene ID per pixel
 - Data mask: ocean, layover and shadow
 - Ellipsoidal incidence angle
 - Gamma-sigma ratio: convert measurement to RTC sigma nought
 - Local contributing area: area exposed to the sensor
 - Local incidence angle: angle of illumination
 - Noise power: noise subtracted from measurement
- Metadata: OGC EO XML, SpatioTemporal Asset Catalog (STAC) JSON

Product Size

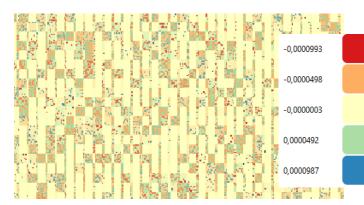
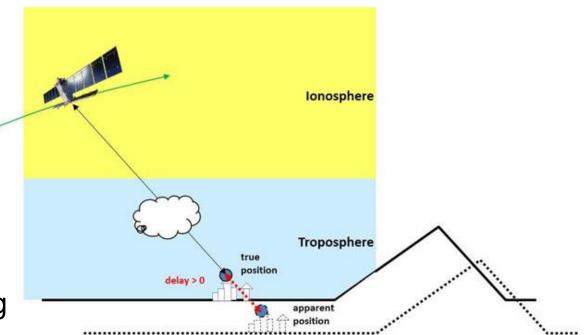

- Example product over the Alps (tile 32TNS)
- "worst case scenario" with full data coverage and strong terrain variation
- Higher ratios in flat terrain (due to higher auto-correlation)
- Near-linear decrease of product size with reduced data coverage
- Overall volume: 3-4 x GRD

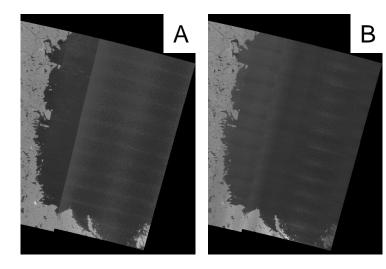
Image	Max. error	Plain [MB]	Plain, overviews [MB]	Compressed, overviews [MB]	Ratio
Acquisition ID	0	115	153	3.9	39.5
Data Mask	0			0.1	1620.4
Noise power VH	2e-5	460	611	149.3	4.1
Noise power VV	2e-5			150.1	4.1
Gamma/Sigma Ratio	1e-4			209.8	2.9
VH gamma0	2e-5			171.9	3.6
VV gamma0	2e-5			218.3	2.8
Ellipsoidal Incident angle	1e-3			26.2	23.3
Local incident angle	1e-2			211.3	2.9
Local contributing area	0.1			66.2	9.2
TOTAL		3909	5194	1207	4.3

Tile location



LERC compression artifacts (tile overlap difference) with 1e-4 error

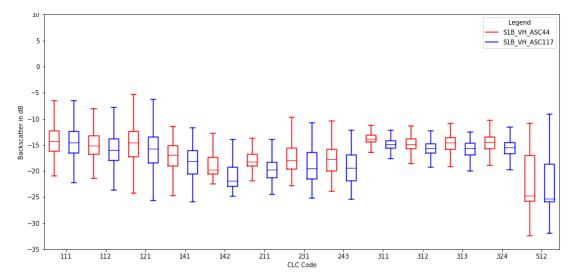
Extended Timing Annotation Dataset (ETAD)


- Geolocation accuracy of Sentinel-1 is approx. 3 m (non-geocoded)
- Main factors for inaccuracies:
 - Atmospheric delay
 - Solid earth tides
 - Instrument movement
- Accuracy can be improved to 0.1 m by utilising the ETAD product
- A new Sentinel-1 product can be created from an existing one and the corresponding ETAD product
- ETAD products will be openly available in the second half of 2023
- Additional inaccuracies in NRB product due to interpolation and DEM

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products/etad-dataset

Use Cases

- Soil Moisture (INRAE, France)
 - Investigation of gamma nought RTC suitability for soil moisture retrieval
- Sea Ice (FMI, Finland)
 - Comparison of methods for removal of thermal noise and scalloping effects
- Land Use / Land Cover (Uni Jena, Germany)
 - Testing of S1-NRB data cube capabilities
 - Analysis of backscatter time series variability across different LULC classes and observation scenarios



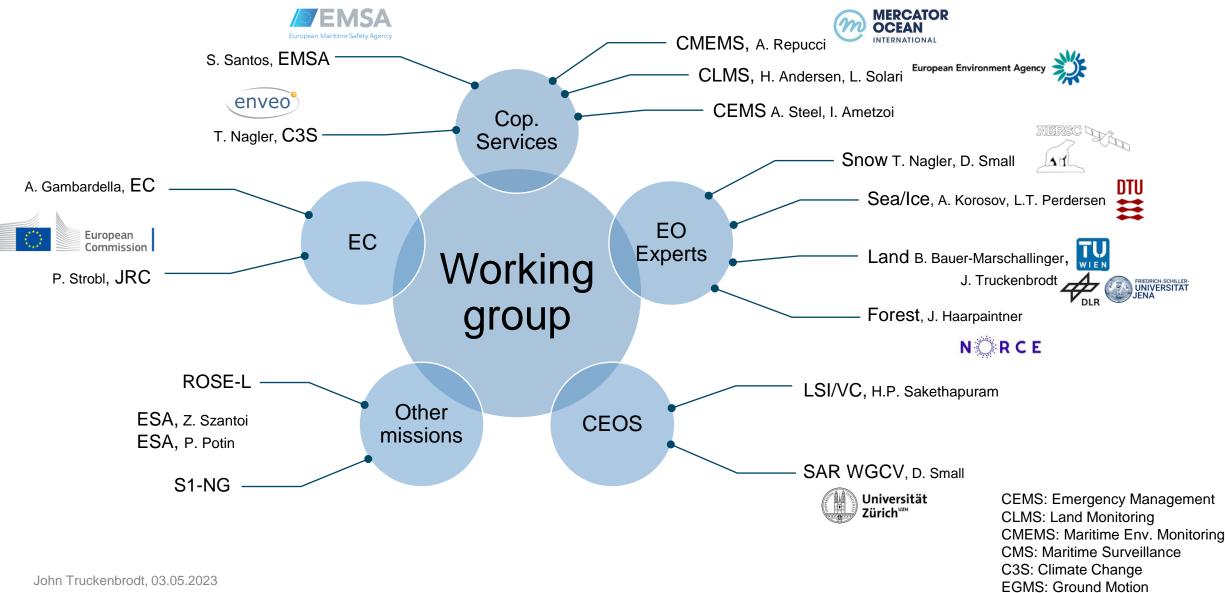
S1 EW VH image after noise removal using the NERSC (A) and FMI (B) methods.

40 nformation or information on SSM B 35 (%'ov) WS (%-30) WSS 20 RMSE=5.6 vol.% RMSE=5.5 vol.% 20 25 30 35 40 25 30 35 40 In situ SSM (vol.%) In situ SSM (vol.%)

VV, with a priori

Surface soil moisture retrieved from σ_E^0 (A) and γ_T^0 (B).

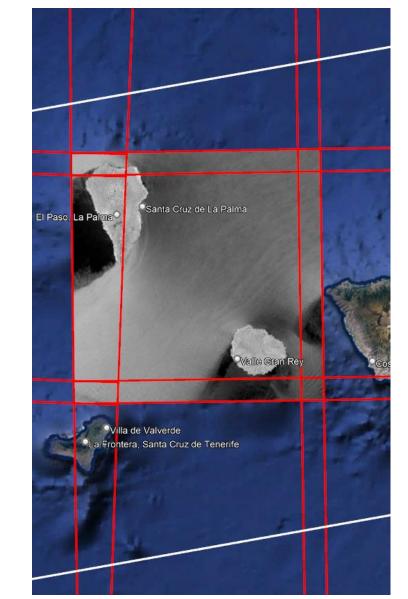
Comparison of backscatter from near range (ASC44) and far range (ASC117) for different CORINE classes.


VV, with a priori

40

NRB Working Group

Instrument Processing Facility

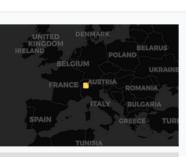

- The IPF processes raw Level-0 data to Level-1 (GRD, SLC) for user uptake
- The Sentinel-1 IPF has undergone several changes since the start of the mission
- Consistent quality of NRB products cannot be assured
- Reprocessing of Sentinel-1 Level-1 products is currently being considered at DLR

notes	end usage	start usage	delivery	version
0		2023-03-30 10:19:46	2023-03-17 12:00:00	003.61
0	2023-03-30 09:29:57	2022-05-12 10:48:19	2022-05-12 00:00:00	003.52
0	2022-05-12 09:31:31	2022-03-23 16:25:31	2022-03-04 00:00:00	003.51
0	2022-03-23 12:25:17	2021-11-04 07:56:32	2021-10-08 00:00:00	003.40
0	2021-11-03 11:08:26	2020-06-30 12:00:00	2020-06-19 12:00:00	003.31
0	2020-06-30 12:00:00	2020-06-23 08:00:00	2020-03-09 12:00:00	003.30
0	2020-06-23 08:00:00	2020-01-29 10:00:00	2019-12-16 12:00:00	003.20
0	2020-01-29 10:00:00	2019-06-26 10:00:00	2019-06-04 15:00:00	003.10
0	2019-06-26 10:00:00	2018-06-26 08:30:00	2018-05-29 00:00:00	002.91
0	2018-06-26 08:30:00	2018-03-13 12:00:00	2018-01-16 00:00:00	002.90
0	2018-03-13 12:00:00	2017-08-22 10:00:00	2017-07-12 00:00:00	002.84
0	2017-08-22 10:00:00	2017-03-28 06:00:00	2017-02-27 00:00:00	002.82
0	2017-03-28 12:00:00	2016-08-23 12:00:00	2016-07-29 00:00:00	002.72
0	2016-08-23 12:00:00	2016-05-11 12:00:00	2016-04-21 00:00:00	002.71
0	2016-05-11 12:00:00	2016-04-13 12:00:00	2016-03-31 00:00:00	002.70
0	2016-04-13 12:00:00	2015-11-20 12:00:00	2015-10-09 00:00:00	002.60
0	2015-11-24 12:00:00	2015-07-02 12:00:00	2015-06-30 00:00:00	002.50
0	2015-07-02 12:00:00	2015-03-19 00:00:00	2015-03-09 00:00:00	002.40

Extension to Ocean Radar Backscatter

- Development so far focused on NRB for land applications
- The CEOS ARD ORB specification was published in 09/22
- A follow-up activity was started in 04/23 to extend the ESA-DLR product specification to ORB
- Formation of a new working group
- Major points being addressed:
 - Pixel spacing(s)
 - Correction of thermal noise
 - Interfacing with NRB in coastal areas
 - Data quality and overall usability
 - Replaceability of GRD product

Data Cube capabilities



Sentinel-1 NRB STAC Catalog / Sentinel-1 NRB STAC Collection / S1A_IW_NRB_1SDV_20210607T171530_20210607T171555_038237_04832F_32TMS_ABCD

S1A_IW_NRB__1SDV_20210607T171530_20210607T171

https://raw.githubusercontent.com/maawoo/copa-nrb-stac/main/32TMS/S1A_IW_NRB_1SDV_20210607T171530_20210607T171555_038237_

Preview Asse	ts Links					
Name	Roles	Content-Type				
CARD4L XML Metadata File	metadata, card4l	application/xml				
Data Mask Image	data-mask, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Ellipsoid Incidence Angle	ellipsoid-incidence-angle, metadata	<pre>a image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Gamma0 RTC to sigma0 RTC ratio	gamma-sigma-ratio, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Local Contributing Area	contributing-area, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Local Incidence Angle	local-incidence-angle, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Noise Power VH	noise-power, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
Noise Power VV	noise-power, metadata	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
VH backscatter data	backscatter, data	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				
VV backscatter data	backscatter, data	<pre>image/tiff; application=geotiff; profile=cloud-optimized</pre>				

METADATA

- Keywords sar, backscatter, esa, copernicus, se
- Collection Sentinel-1 NRB STAC Collection
- First Acquisition 7.6.2021, 17:15:30 UTC
- Last 7.6.2021, 17:15:55 UTC
- Acquisition
- Created 21.8.2021, 03:11:23 UTC
- Instruments c-sar
- Constellation sentinel-1
 - Platform sentinel-1a
 - GSD 10 m
 - Acquired 7.6.2021, 17:15:30 UTC

CARD4L

- Specification Normalised Radar Backscatter
- Specification Version
- Measurement Type

- [4]: nr = ds.where((ds['sat:relative_orbit'] == 44), drop=True).chunk((-1, 1, 1024, 1024))
 fr = ds.where((ds['sat:relative_orbit'] == 117), drop=True).chunk((-1, 1, 1024, 1024))
 fr
- [4]: xarray.DataArray 'stackstac-31de2c1eacc17eb3540f38b874c70d96' (time: 60, band: 10, y: 3189, x: 7471)

80		Array	Chunk		
	Bytes	106.51 GiB	480.00 MiB		
	Shape	(60, 10, 3189, 7471)	(60, 1, 1024, 1024)	0 0	
	Count	39181 Tasks	320 Chunks	6 7471	
	Туре	float64	numpy.ndarray	e	

► Coordinates: (55)

- * Attributes:
- spec : RasterSpec(epsg=32632, bounds=(614990.0, 5618680.0, 689700.0, 5650570.0), res olutions_xy=(10.0, 10.0)) crs : epsg:32632 transform : | 10.00, 0.00, 614990.00| | 0.00,-10.00, 5650570.00| | 0.00, 0.00, 1.00|
- resolution : 10.0

The Ellipsoid Incidence Angle range is between 31.41° and 44.9°

ESA-DLR coordination around 5 axes

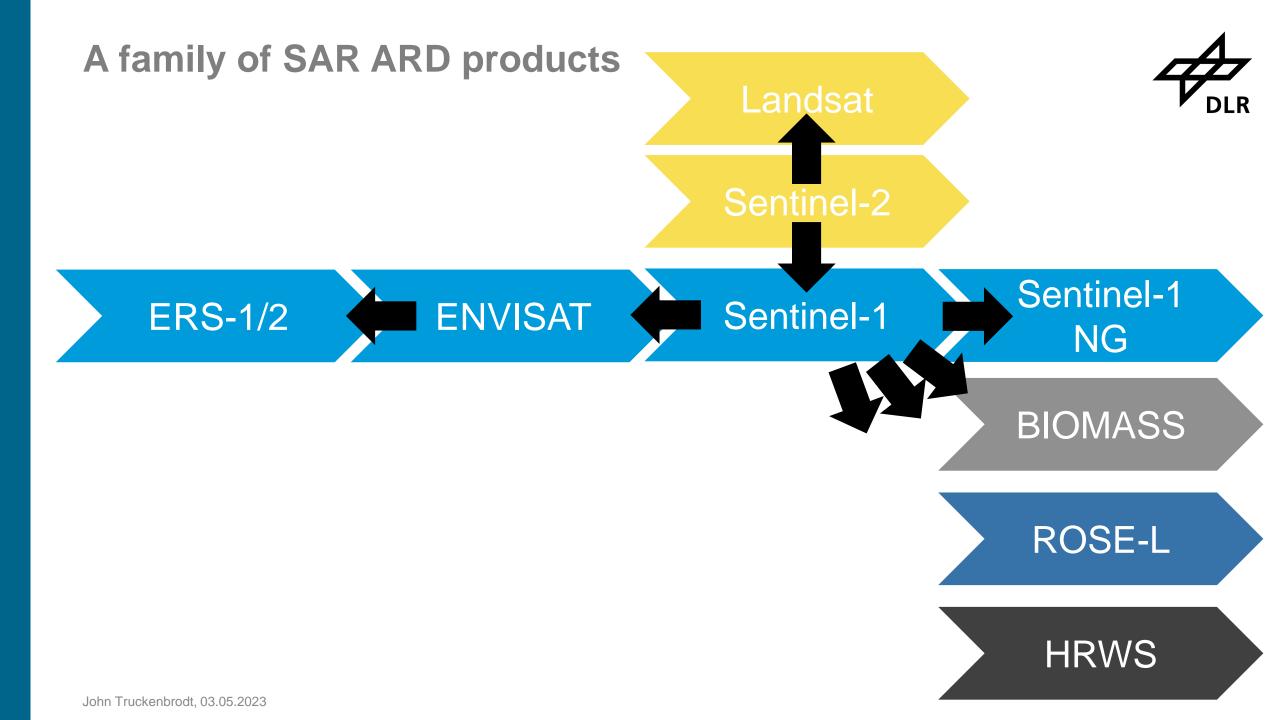
1. Joint Sentinel-1 ARD NRB product:

> Objective to have ESA and DLR product definitions aligned.

2. Joint ESA and DLR Sentinel-1 ARD NRB processor:

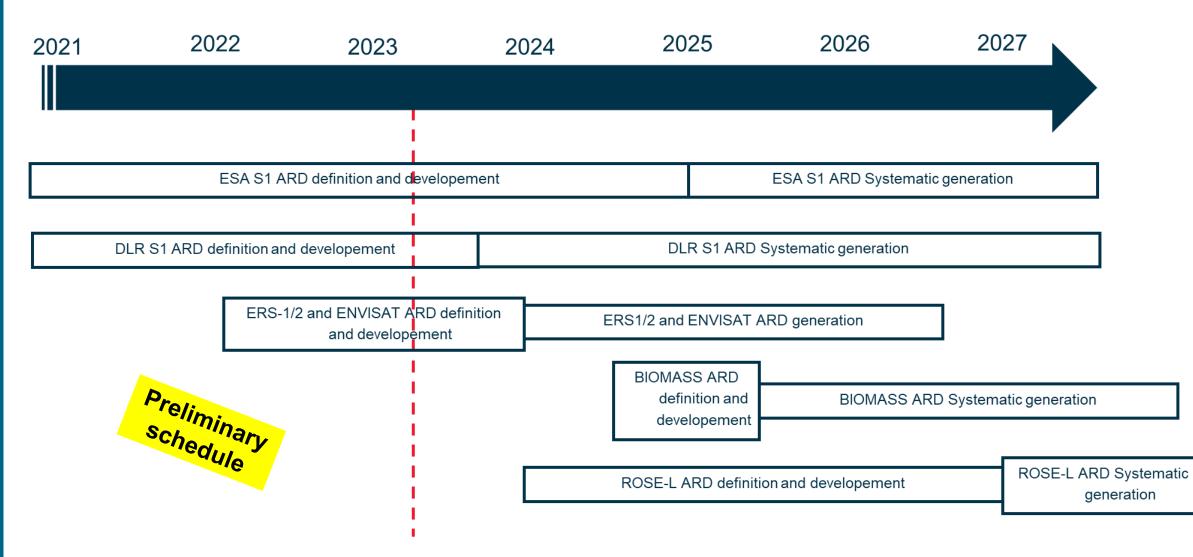
- Exchanges of modules and code developed.
- Share the new modules developed (e.g. file packaging).

3. Coordination on use cases:

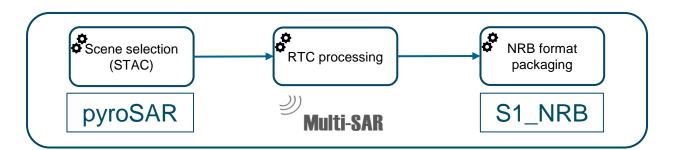

Complementary use cases in terms of spatial and temporal coverage, and instruments.

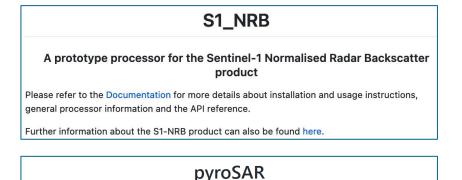
4. Coordination on validation:

> Complementary validations in term of radiometry, geometry, processing modules, etc.


5. Exchange of information related to internal ESA and DLR activities:

> Monthly coordination meetings.


Time schedule and access for users to ARD NRB



NRB Processor

- Open-Source prototype based on Python and ESA SNAP
- Python tools are further developed to increase robustness
- SNAP component is being replaced with DLR in-house Multi-SAR
- Tools have been made compliant with STAC catalogue and HPC Slurm processing environment
- Workflow orchestration is currently being set up

A Python Framework for Large-Scale SAR Satellite Data Processing

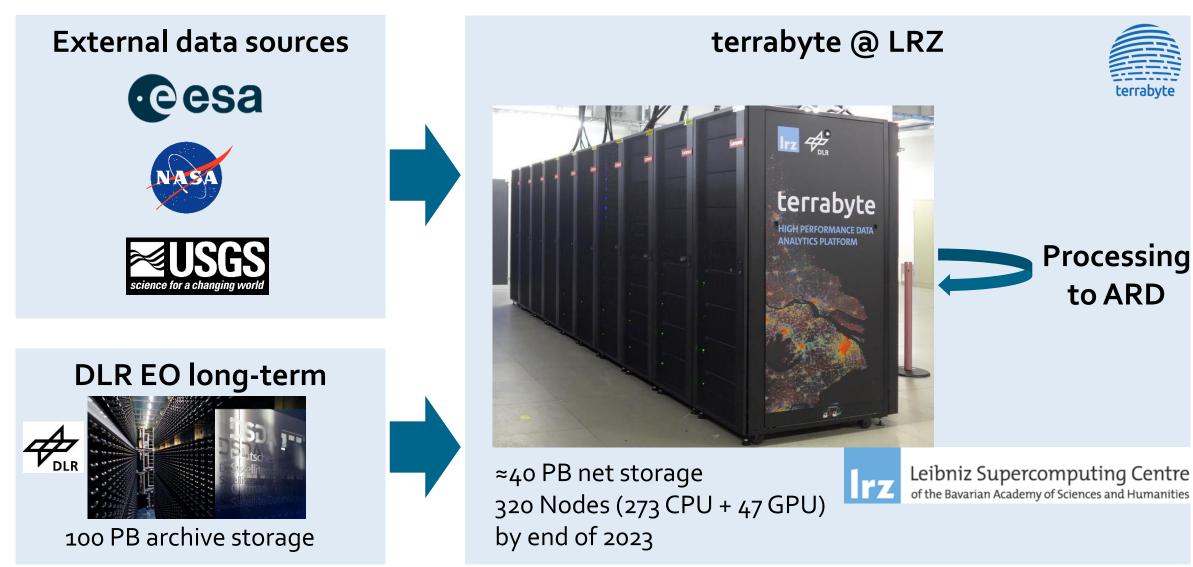
build passing 🔕 build passing coverage 50% docs passing pypi package 0.19.0 conda-forge v0.19.0

The pyroSAR package aims at providing a complete solution for the scalable organization and processing of SAR satellite data:

- Reading of data from various past and present satellite missions
- Handling of acquisition metadata

Multi-SAR

- User-friendly access to processing utilities in SNAP and GAMMA Remote Sensing software
- Formatting of the preprocessed data for further analysis
- Export to Data Cube solutions


Head on over to readthedocs for installation instructions, examples and API reference.

https://github.com/johntruckenbrodt/pyroSAR https://github.com/SAR-ARD/S1_NRB

DLR: terrabyte platform

International activities for EO platforms

CEOS:

- WGISS
- LSI-VCARD

ESA

- WG Data Access & Preservation
- WG Common Architecture

OGC

- EO Exploitation Platform DWG
- GeoDataCube SWG
- Analysis Ready Data SWG
- Space agency collaborations
 - USGS-DLR: Clouds, Data Access
 - CNES-DLR: FaaS, Zeebe, STAC
- **CCSDS:** Cloud Standardization Group

Thank You!