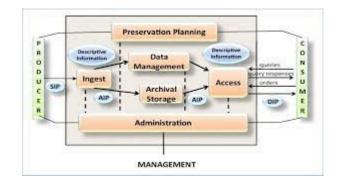


Data discovery in planetary science

Where it help in data preservation


Pierre Le Sidaner, Cyril Chauvin, Regis Haigron, Chloé Azria, S. Erard, B. Cecconi

Digital data in astronomy

Preservation came 20 years ago with OAIS

Valorisation come with FAIR

(interoperable but also findable and accessible)

Digital data in astronomy

- Preservation with metadata

What to do with png file without metadata

```
BITPIX =
                           16
                        34481 / NUMBER OF ELEMENTS ALONG THIS AXIS
NAXIS2 =
                        34494 / NUMBER OF ELEMENTS ALONG THIS AXIS
                            T / This file may contain FITS extensions
                2000.00000000 / Mean equinox
MJD-OBS = 4.301900000000E+04 / Modified Julian date at start
                              / Astrometric system
                              / WCS projection type for this axis
CTYPE1 = 'RA---TAN'
CUNIT1 = 'deq
                              / Axis unit
CRVAL1 = 3.468331946005E+01 / World coordinate on this axis
                 1.707550E+04 / Reference pixel on this axis
CD1 1 = -1.865469821496E-04 / Linear projection matrix
CD1_2 = 0.00000000000000E+00 / Linear projection matrix
CTYPE2 = 'DEC--TAN'
                              / WCS projection type for this axis
                              / Axis unit
CRVAL2 = -8.446640080320E+01 / World coordinate on this axis
                 1.890150E+04 / Reference pixel on this axis
          0.00000000000E+00 / Linear projection matrix
          1.865469821496E-04 / Linear projection matrix
          0.00000000000E+00 / Maximum equivalent exposure time (s)
      = 0.000000000000E+00 / Maximum equivalent gain (e-/ADU)
SATURATE= 4.999782311225E+04 / Saturation Level (ADU)
                              / The software that processed those data
SOFTVERS= '2.38.0 '
                              / Version of the software
SOFTDATE= '2014-05-27'
                              / Release date of the software
SOFTAUTH= '2010-2012 IAP/CNRS/UPMC' / Maintainer of the software
SOFTINST= 'IAP http://www.iap.fr' / Institute
                              / Who ran the software
ORIGIN = 'CAI-MAMA-VO-PARIS Observatoire de Paris' / Where it was done
DATE = '2014-06-30T15:35:09' / When it was started (GMT)
COMBINET= 'AVERAGE '
                              / COMBINE_TYPE config parameter for SWarp
COMMENT Propagated FITS keywords
VOLTAGE = 8.2100000000000E+00 / Lamp voltage of the scanning machine
FSTPAV = 'SRC003JPB'
                               / Name of the original pave
INSTRUME= 'MAMA
                              / Microdensitometer
ATLAS = 'SRC Blue-Atlas
                              / Atlas name
       = '003
                                SRC-J atlas field number
PLTLABEL= 'J2565
                               / Observatory plate label
EMULSION= 'IIIaJ
                               / Photographic emulsion
FILTER = 'GG395
ALPHA 50= '02:24.0
                               / Approximate 1950 R.A. for the plate centre
DELTA 50= '-85:00
                               / Approximate 1950 Dec for the plate centre
DATE-OBS= '1976-08-29'
                               / UT date of Observation
     = '2443020.27321'
                                Julian date of observation at mid exposure
                               / Local sidereal time at start of exposure
LST SOE = '02:28:00'
 LTDATE = '1976.6626'
                               / Decimal date of the plate exposure
EXPOSURE= '60.0
                               / Exposure time (minutes)
PLTGRADE= 'AI2
                               / Plate grade
TELNAME = 'Siding
                              / Telescope location
```


Digital data in astronomy

- Preservation deal with FAIR

Preservation <=> futur usage of data Reusable mean no preservation without metadata

Standardized metadata comes with IVOA (interoperable but also findable and accessible)

Planetary science & VESPA

How to make Planetary science data available without reinventing the wheel

It come from several communities:

- Solar physics surface, activity, corona, wind
- Planets
 Interior, surface (OGC), atmosphere
- Plasma interplanetary medium, solar wind, planetary atmosphere
- Small bodies & comets
- Exoplanets
- Minerals and samples

Standards data format

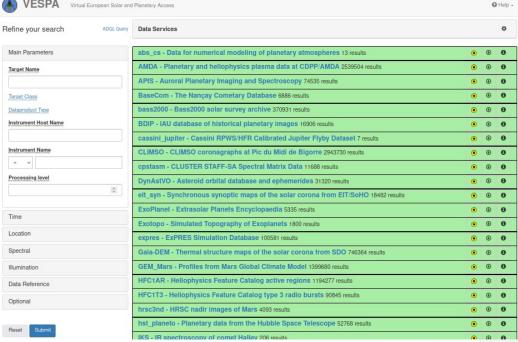
- Technical issues
 - ASCII tables
 - Images not only fits
 - Spectrum (not only incident light, minerals ...).
 - Dynamic spectrum
 - OGC data and services
 - Orbitographic data (spice kernel)
 - Maps
 - Events (VO)
 - •

Vespa ⊆ **IVOA**

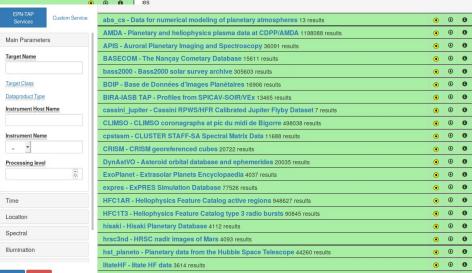
Long time maintenance => use existing eco-system

- adoption of IVOA with its eco-system (registry, TAP, Applications)
- deviation of obscore into EPN-CORE
- list of mandatory parameters
- optional parameter list to satisfy sub-communities
- no more RA DEC access => time, objects, mission

Work to be done


Define a flat data model

 Define a web client to access all data


- Double complexity
 - Each community have their usage
 - Vespa started with only few services

Vespa client

Plotting tools

TOPCAT

Aladin

SPLAT

CASSIS

2-3DView

Example queries

Saturn in March 2012

PADC Paris Astronomical Data Centre

Already more than 60 services

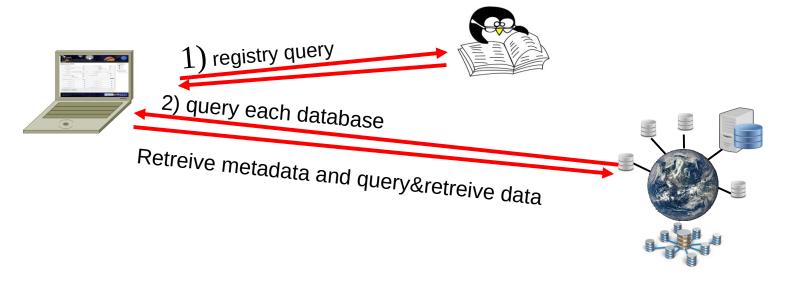
- Each service appear indepently in the portal
- NASA (PPI) come with 170 services
- Vespa succes increase with 20 services / year

http://vespa.obspm.fr

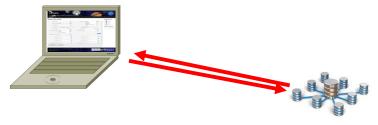
devlopment version

http://voparis-europlanet-dev.obspm.fr/

- How web portail can handle that?
 - Thematic sort ?
 - Other grouping of services ?
 - What is the response time to the query ?
 - When does the dynamic display break?


User feedback Complains

- You can't find what you're looking for?
- It's not intuitive!
- We don't work like that!
- Everyone has a point of view on ergonomy!



Local aproach

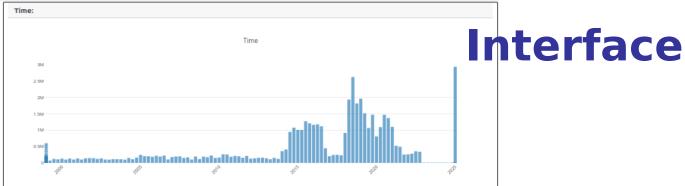
Distributed architecture IVOA

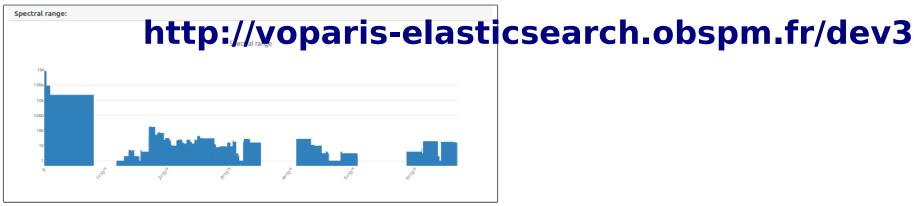
Local metadata database

centralized metadata database Metadata previously harvested

Local aproach

- retrieval of the 34Millions metadata set
- ingestion in a search engine.
- Creation of spatial range zone (time, frequency) to be treated separately


Polygons management problem Range long/lat


Moc?

NoSQL facilities/difficulties

- Easy way to scan meta datas
- Facets search make it intuitive
 - Search in large heterogeneous datasets
- Many difficulties on diplaying hetrogeneous outputs (mixing carot and califlower)!
- range filed type are usefull but weighs down the queries.
- We have to optimized before clustering.

rarget name		
	Mars	27256532
	57P	7057527
5	Sun	4286280
5	un	3933960
E	Earth	2095487
١	/enus	1637242
		1127640
	Moon	533273

Interface

- real progres to do
- Complementary to the calassical VO portal.
- Main question remain how to display results
- Take advantage of the Nasa portal?