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¡ Experimental physicist
§ Detector builder, Nature scrutiniser, Engineer 

botherer, and Theory disprover.
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¡ The Italian for detector is “rivelatore”.

¡ Detectors reveal the presence of particles:
§ What kind of particle.
§ Where the particle came from and went through.
§ How much energy the particle had.
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¡ Mostly pions.
§ The cheapest way to rearrange 

quarks and gluons.
▪ 2/3 are  charged: cτ~8 m decay in μν.
▪ 1/3 are neutral: promptly decay in 

diphotons.

¡ The things we look for.
§ From 10-7 (W, Z) to 10-10 (Higgs) 

times fewer than the pions.
§ Or less…
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10-7

10-10
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¡ Directly observable particles must:
§ Undergo strong or EM interactions.
§ Be sufficiently long-lived to pass the detectors.

¡ We can directly observe:
§ Electrons, muons, photons.
§ Neutral or charged hadrons:
▪ Pions, protons, kaons, neutrons, …
▪ Many physics analyses treat jets from quark 

hadronization collectively as single objects.
▪ Use displaced secondary vertices to identify jets 

originating from b-quarks.

¡ We can indirectly observe long lived weakly 
interacting particles (e.g. neutrinos) through 
missing transverse energy.
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¡ Short-lived particles decay to long-
lived ones.
§ Neutral pion: two photons.
§ u, d, s quarks and gluons: jets of mostly 

pions.
§ c, b quarks: jets with long-lived mesons.
§ W, Z bosons, τ leptons: multiple decay 

topologies. →
§ “Everyone” else in the Review of Particle 

Physics “phonebook”: https://pdglive.lbl.gov/.
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¡ Fixed-target geometry
§ Easy access, smaller, less expensive.

¡ Collider geometry
§ Hermetic, larger, more expensive.
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¡ Inner tracking
§ Measure charged particles disturbing them the least possible.

¡ Calorimetry
§ Measure as much as possible the energy of all particles.

¡ Outer tracking
§ Measure and identify muons.
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¡ Ultimately all detectors end up detecting charged 
particles:
§ Photons are detected via electrons produced in different 

ways.
§ Neutrons are detected through transfer of energy to 

charged particles in the detector medium (shower of 
secondary hadrons).

¡ Charged particles are detected via EM interaction 
with electrons or nuclei in the detector material:
§ Inelastic collisions with atomic electrons ® energy loss.
§ Elastic scattering from nuclei ® change of direction.
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Trying to measure the energy of everything except muons.
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¡ Measure energy deposited in material by particles which 
give rise to electromagnetic or hadronic showers.
§ Electrons, photons and hadrons (including neutral hadrons)

GEANT shower Monte Carlo (PbWO4 crystal)

e
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¡ Fractional, or relative, energy 
resolution improves with energy 
— in contrast to measurements 
of a magnetic spectrometer
§ The size required increases only

like log(E)

¡ Calorimeters can:
§ Measure  energy of jets
§ Measure missing transverse 

energy
▪ Neutrinos, etc

§ Provide fast, efficient, and 
selective trigger output

§ Measure position
§ Measure time
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¡ Need material in which shower takes place, and a way to obtain a 
signal to measure the shower – for example:
§ Ionization
▪ Liquid argon, silicon wafer, various gasses and gas mixtures…

§ Scintillation
▪ Plastic scintillator, various (inorganic) crystals…

§ Cerenkov radiation
▪ Lead glass, water, air…

¡ Sampling calorimeter has dense material to keep the shower 
compact, and the shower is sampled with an active material.
§ e.g. plastic scintillator, liquid argon, silicon wafer, etc.

¡ Homogeneous calorimeter is entirely composed of active material
§ e.g. lead glass, lead tungstate crystals, water…

¡ Electromagnetic calorimeters designed to measure electrons and 
photons.

¡ Hadron calorimeters designed to measure hadronic showers.
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¡ Electromagnetic showers result from electrons and photons undergoing 
bremsstrahlung and pair creation.

• For high energy (GeV scale) electrons, bremsstrahlung is the dominant 
energy loss mechanism.

• For high energy photons, pair creation is the dominant absorbtion 
mechanism.
§ Shower development governed by these processes.
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¡ Radiation length (X0) defined to be the distance 
over which an electron loses all but 1/e of its 
energy.

¡ Useful approximation è
§ Rough derivation in [Cal1]; more precise 

approximation in [Cal2].

2
2

180 −⋅≈ cmg
Z
AX0

§ Critical energy (Ec) defined 
to be where energy loss 
due to radiation and 
energy loss due to 
ionization are equal

§ Other, more precise, 
approximations in [Cal2].

MeV560
Z

Ec ≈

E > Ec

E < Ec
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¡ As compared to EM showers, hadron showers are:
§ Broader and more penetrating.
§ Subject to larger fluctuations – more erratic and varied.
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¡ Individual hadron showers are quite dissimilar
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¡ Simple model of interaction on a disk of radius R:
§ sint = pR2 µA2/3

§ Compare to sinel ≈ s0A0.7, s0 = 35 mb.

¡ Nuclear interaction length: mean free path before 
inelastic interaction:

¡ Mean transverse momentum resulting from interaction:
§ <pT> ~ 300MeV.
§ This is about the same magnitude as the energy lost traversing 

1l for typical materials.
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Mass resolution ~ √2 × energy resolution ⊕ opening angle resolution
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¡ Usual parameterization for calorimeters:

¡ a: Stochastic (or “sampling”) term
§ Accounts for statistical fluctuation of the number of primary signal 

generating happenings.
¡ b: Noise term

§ Electronics noise (i.e., its energy equivalent).
§ Pileup (other energy entering the measurement area).

¡ c: Constant term
§ Non-uniformity of signal generation or collection.
§ Intercalibration errors.
§ Other fluctuations directly proportional to energy; fluctuation in the 

EM component in hadronic showers.
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¡ Hadronic calorimeters are 
(almost) always sampling 
calorimeters.

¡ Fluctuations in the visible 
energy have more sources:
§ Sampling fluctuations (same as 

for sampling EM calorimeters).
§ Fluctuations between the 

electromagnetic and hadronic
components.
▪ and also between the different 

elements of the hadronic
component.

¡ Size of EM component, F0, 
determined mainly by the first 
interaction.

¡ Considerable shower to shower 
fluctuations. è

Four same-energy pion showers:
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¡ Both the “jets plus tracks” and the more ambitious particle flow (which aims 
to give a complete event description in terms of particles) provide an 
improved jet energy resolution – particularly at lower jet ET.

¡ Validated with data  – for example in ET
miss resolution for W®ln events.
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¡ Dielectrons from J/ψ to Z
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¡ SM Higgs to diphoton search.
§ Photon energy resolution crucial to mass peak resolution.
§ Best mass resolution: ~1% (with just 1 year of running).
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Trying to retrace the path of charged particles, including far-reaching 
muons.
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¡ To find the hard interaction vertex. è
¡ To identify secondary vertices. î

§ Longer-lived particles.
¡ To measure trajectory of particles.

§ Momentum and energy loss of charged particles.
§ Connection to showers in calorimeters (electrons, 

photons).
§ Provide inner leg for muon reconstruction.
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¡ Solid state 
detectors.
§ Pixels for 

vertexing.
§ Strips for tracking.

¡ Gaseous 
detectors.
§ Drift tubes, etc for 

outer tracking.
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¡ Drift Tubes.
¡ Microstrip Gas Counters.
¡ Gas Electron Multipliers.
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K0→π+π-
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Inefficiency at eta cracks
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¡ Dimuons from η to Z
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¡ Particles have different interactions with matter.
§ Different detectors exploit those differences.
§ Eventually, it boils down to charged particle interactions, be it directly 

or through showers.
§ CMS has an excellent array of detectors.

¡ Calorimetry is quite involved.
§ Focus on energy reconstruction and resolution.
§ Electromagnetic and hadronic showers are very different.
§ CMS has a rather simple HCAL.
▪ Performance compensated by excellent tracker, via Particle flow methods.

¡ Tracking systems are crucial.
§ CMS is particularly good at it.
▪ Particle flow makes extensive use of tracking to disentangle the calorimeter 

deposit.
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¡ 7000 tonnes
in a cylinder about 26 m long
and 25 m in diameter.

¡ Average density of 0.6 g/cm3

or 30% less than an apple.

¡ 14000 tonnes
in a cylinder about 21.5 m long
and 15 m in diameter.

¡ Average density of 3.7 g/cm3

just like a diamond.
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¡ [ http://cern.ch/go/BXt9 ] ¡ [http://cern.ch/go/Rfq9 ]

¡ ATLAS would float in water but CMS would sink.
CMS is 7 times denser than ATLAS, hence the C for Compact.

¡ But first you'd need to get them out of the caverns. J



…the curious, and the insatiable.
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Trying to measure the energy of everything except muons.

IHSTP - 2023 physics.is.great@cern.ch 64



¡ Measure energy deposited in material by particles which 
give rise to electromagnetic or hadronic showers.
§ Electrons, photons and hadrons (including neutral hadrons)

GEANT shower Monte Carlo (PbWO4 crystal)

e
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¡ Fractional, or relative, energy 
resolution improves with energy 
— in contrast to measurements 
of a magnetic spectrometer
§ The size required increases only

like log(E)

¡ Calorimeters can:
§ Measure  energy of jets
§ Measure missing transverse 

energy
▪ Neutrinos etc

§ Provide fast, efficient, and 
selective trigger output

§ Measure position
§ Measure time
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¡ Need material in which shower takes place, and a way to obtain a 
signal to measure the shower – for example:
§ Ionization
▪ Liquid argon, silicon wafer, various gasses and gas mixtures…

§ Scintillation
▪ Plastic scintillator, various (inorganic) crystals…

§ Cerenkov radiation
▪ Lead glass, water, air…

¡ Sampling calorimeter has dense material to keep the shower 
compact, and the shower is sampled with an active material.
§ e.g. plastic scintillator, liquid argon, silicon wafer, etc.

¡ Homogeneous calorimeter is entirely composed of active material
§ e.g. lead glass, lead tungstate crystals, water…

¡ Electromagnetic calorimeters designed to measure electrons and 
photons.

¡ Hadron calorimeters designed to measure hadronic showers.
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¡ Electromagnetic showers result from electrons and photons undergoing 
bremsstrahlung and pair creation.

• For high energy (GeV scale) electrons, bremsstrahlung is the dominant 
energy loss mechanism.

• For high energy photons, pair creation is the dominant absorbtion 
mechanism.
§ Shower development governed by these processes.
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¡ Radiation length (X0) defined to be the distance 
over which an electron loses all but 1/e of its 
energy.

¡ Useful approximation è
§ Rough derivation in [Cal1]; more precise 

approximation in [Cal2].

2
2

180 −⋅≈ cmg
Z
AX0

§ Critical energy (Ec) defined 
to be where energy loss 
due to radiation and 
energy loss due to 
ionization are equal

§ Other, more precise, 
approximations in [Cal2].

MeV560
Z

Ec ≈

E > Ec

E < Ec
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Bremsstrahlung in the
Coulomb field of the nucleus Fractional energy loss: electrons

Ec

IHSTP - 2023 physics.is.great@cern.ch 71



Pair Production
Occurs in the electric field of the 
nucleus (if Eg > 2mec2)

Probability of conversion in
1 X0 is e-7/9

Can define mean free path:

Compton scattering
   
                         Photoelectric effect
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¡ The pairs are emmitted in 
the direction of the 
photon: q ~me/Eg.

¡ Electrons from the 
photoelectric effect and 
from Compton scattering 
are more or less isotropic.
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¡ The multiplication of the shower continues until the energies 
fall below the critical energy, Ec.

¡ A simple model of the shower uses variables scaled to X0 and 
Ec:

¡ Electrons loose about 2/3 of their energy in 1X0, and the 
photons have a probability of 7/9 for conversion: X0 ~ 
generation length

¡ After distance t:

¡ When E = Ec, ~shower maximum:
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¡ Higher Z materials have lower Ec.
¡ Scaling of longitudinal development with X0 only 

holds approximately:
§ Lower Ec Þ multiplication continues to lower energies 

and electrons continue radiating down to lower energies

IHSTP - 2023 physics.is.great@cern.ch 76



¡ Molière radius, Rm, scaling factor for lateral extent, defined by:

¡ Gives the average lateral deflection of electrons of critical energy 
after 1 X0
§ 90% of shower energy contained in a cylinder of 1× Rm
§ 95% of shower energy contained in a cylinder of 2× Rm
§ 99% of shower energy contained in a cylinder of 3.5× Rm

20 721 −⋅≈
⋅

= cmg
Z
A

E
XMeVR

c
M

Width of core controlled by
multiple scattering
of e±

Width of periphery controlled
by Compton photons
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¡ Lateral shower shape: to very good approximation is 
invariant with energy.

Infinitely long cylinder
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Photons

Electrons

¡ Shower processes are intrinsically linear and proportional to 
incoming particle energy:
§ Electromagnetic calorimeters are intrinsically linear.
§ Keeping them so makes demands on: shower containment, 

readout devices, and associated electronics.

• Photon showers develop slightly 
deeper than electron showers.
§ Because of distance before first 

conversion:

• Depth of photon showers 
fluctuates more than electron 
showers.

07
9 Xpair ≈λ
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¡ Hadronic cascades develop in an analogous way to EM showers.
§ Strong interaction controls overall development.
§ High-energy hadron interacts with material, leading to multi-particle 

production of more hadrons.
§ These in turn interact with further nuclei.
§ Nuclear breakup and spallation neutrons.
§ Multiplication continues down to the pion production threshold.

▪ E ~ 2mp = 0.28 GeV/c2.
§ Neutral pions result in an electromagnetic component.

▪ immediate decay: p0®gg, also h®gg.

¡ Energy deposited by:
§ Electromagnetic component (i.e. as for EM showers).
§ Charged pions or protons.
§ Low energy neutrons.
§ Energy lost in breaking nuclei (nuclear binding energy).
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¡ Simple model of interaction on a disk of radius R:
§ sint = pR2 µA2/3

§ Compare to sinel ≈ s0A0.7, s0 = 35 mb.

¡ Nuclear interaction length: mean free path before 
inelastic interaction:

¡ Mean transverse momentum resulting from interaction:
§ <pT> ~ 300MeV.
§ This is about the same magnitude as the energy lost traversing 

1l for typical materials.
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¡ As compared to EM showers, hadron showers are:
§ Broader and more penetrating.
§ Subject to larger fluctuations – more erratic and varied.
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¡ Individual hadron showers are quite dissimilar
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Z r
(g.cm-3)

Ec
(MeV)

X0
(cm)

lint
(cm)

Air 30 420 ~70 000
Water 36 84
PbWO4 8.28 0.89 22.4
C 6 2.3 103 18.8 38.1
Al 13 2.7 47 8.9 39.4
L Ar 18 1.4 14.0 84.0
Fe 26 7.9 24 1.76 16.8
Cu 29 9.0 20 1.43 15.1
W 74 19.3 8.1 0.35 9.6
Pb 82 11.3 6.9 0.56 17.1
U 92 19.0 6.2 0.32 10.5

PDG booklet a good source for more/similar numbers
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¡ Initial peak from p0s 
produced in the first 
interaction.

¡ Gradual falloff 
characterized by the 
nuclear interaction 
length, lint. è

As with EM showers: depth to contain 
a shower increases with log(E).
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0.5 1.0 1.5 2.0 lint

ç Better lateral containment with 
increasing energy.

¡ Mean transverse momentum from 
interactions, <pT> ~ 300 MeV, is about 
the same magnitude as the energy lost 
traversing 1 l for many materials.

¡ Radial extent of the cascade is well 
characterized by l. è

¡ The p0 component of the cascade 
results in an electromagnetic core. è
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Mass resolution ~ √2 × energy resolution ⊕ opening angle resolution
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¡ Usual parameterization for calorimeters:

¡ a: Stochastic (or “sampling”) term
§ Accounts for statistical fluctuation of the number of primary signal 

generating happenings.
¡ b: Noise term

§ Electronics noise (i.e. its energy equivalent).
§ Pileup (other energy entering the measurement area).

¡ c: Constant term
§ Non-uniformity of signal generation or collection.
§ Intercalibration errors.
§ Other fluctuations directly proportional to energy; fluctuation in the 

EM component in hadronic showers.

c
E
b

E
a

E
c

E
b

E
a

E
⊕⊕=+"

#

$
%
&

'+"
#

$
%
&

'
="

#

$
%
&

' σσ
 simply     more or,   2

222

IHSTP - 2023 physics.is.great@cern.ch 89



¡ Even in homogeneous calorimeters where the calorimeter consists 
entirely of active material, the energy is “sampled”.
§ The measurement counts the occurrence of a process.
§ So there is an error proportional to ÖN (where N is the number of 

occurrences).

¡ Example:
§ In a lead glass calorimeter the signal detected is Cerenkov radiation.
§ Cerenkov radiation produced by e± with b > 1/n, i.e E > 0.7 MeV.
§ So, at most, 1000/0.7 ≈ 1400 independent particles/GeV produce light.
▪ Fluctuation = Ö1400/1400 ≈ 3%.

§ Signal in photodetector is only ~1000 photoelectrons/GeV
▪ Further fluctuation (photostatistics) Ö1000/1000 ≈ 3%.

§ Thus, overall resolution from lead glass calorimeter: s/E ≈ 5%/ÖE.
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¡ Smallest stochastic term obtained by counting the most numerous processes
§ Example: collecting electrons liberated by ionization in Ge crystals (at 77°K)

 
W
En = where W is the mean energy to liberate an electron.

E
W

n
n
==

E
σ

But the total energy does not fluctuate, and since a large 
fraction goes into the liberation of electrons the 
resolution is improved by a factor, F (the Fano factor).

E
FW

=
E
σ

In Ge measure s = 178 eV for Eg = 100 keV.
Without Fano factor, expect     W = 2.96 eV Þ s » 540 eV.

IHSTP - 2023 physics.is.great@cern.ch 91



IHSTP - 2023 physics.is.great@cern.ch 92



IHSTP - 2023 physics.is.great@cern.ch 93



IHSTP - 2023 physics.is.great@cern.ch 94



IHSTP - 2023 physics.is.great@cern.ch 95



IHSTP - 2023 physics.is.great@cern.ch 96



IHSTP - 2023 physics.is.great@cern.ch 97



IHSTP - 2023 physics.is.great@cern.ch 98



¡ You can: 
§ Widen windows to collect 

all energy. 
§ Or dynamically cluster 

energy to gather all the 
bits and pieces. è

§ Or identify brems
following track kinks 
(Particle Flow in CMS).

§ Or tag high quality (low 
brem) electrons, using 
track curvature info or E/p.
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¡ The energy may be sampled by active layers interposed 
between dense high Z absorber materials. è
§ e.g. plastic scintillator layers between layers of Pb, etc.

¡ All LHC hadronic calorimeters.

¡ Stochastic term depends on:
§ the granularity of the sampling, and
§ the fraction of energy deposited in the active material.

§ If energy loss in the active layers is small compared to loss in 
absorber, the number of charged particles crossing the active layer is 
n ≈ E/DEabs, and DEabs = tabs (dE/dx)

§ Thus, s/E = Ön/n ≈ tabs/ÖE
§ Using the fraction of energy sampled, fsamp, as a parameter a 

generally valid formula for the stochastic contribution is:

)1(5.0)1(%5 sampf
cellsamp Ef

E
−Δ−=

E
σ

Where DEcell is the energy deposited
in a unit sample (absorber + active layer)

Active
layer

Absorber
layer
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¡ Hadronic calorimeters are 
(almost) always sampling 
calorimeters.

¡ Fluctuations in the visible 
energy have more sources:
§ Sampling fluctuations (same as 

for sampling EM calorimeters).
§ Fluctuations between the 

electromagnetic and hadronic
components.
▪ and also between the different 

elements of the hadronic
component.

¡ Size of EM component, F0, 
determined mainly by the first 
interaction.

¡ Considerable shower to shower 
fluctuations. è

Four same-energy pion showers:
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¡ On average 1/3 of the mesons produced at each 
interaction will be p0s.
(p+, p0, and p- equally produced)
§ And then some more in the next step, etc.

¡ Assume that a fraction of EM energy (f0) is produced at 
each step:
§ After 1st step: f0.
§ After 2nd step: f0 +f0(1-f0), etc.

¡ Call F0 the fraction of EM energy
in the shower:
§ F0 = f0S(1-f0)n-1, after n generations.
§ F0 = 1 - (1-f0)n.

¡ So:
§ At low energy F0 ≈ f0.
§ At very high energy F0 ® 1. ì
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¡ Large event to event fluctuations in F0. 
¡ Average value of F0 increases with energy. ê
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¡ In general, electromagnetic and hadronic 
responses of the calorimeter are different.
§ In a calorimeter system the electromagnetic and 

the hadronic sections may have different values of 
e/h.

¡ If e/h = 1 the calorimeter is said to be 
compensating.

¡ If e/h is far from 1, this has serious 
consequences for performance:
§ Energy resolution is non-Gaussian.
§ Ee/E� � 1: the response to hadrons differs from the 

response to electrons and depends on energy.
▪ Non-linear response to hadrons.

§ Event to event fluctuations of F0 contribute to the 
energy resolution.
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¡ Compensation 
§ Software: Identify EM hot spots and down-weight. 

Requires high 3D segmentation: H1, (ATLAS).
§ Hardware : Bring the response of hadrons and 

electrons to the same level (e/h = 1) so that 
fluctuations do not matter: ZEUS.

¡ Dual (or triple) readout
§ Evaluate the 2 components separately (+ possibly 

slow neutrons): ILC. 
¡ Particle flow 

§ Use the calorimeter only for the neutral hadron 
component: (CMS), ILC.
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¡ e/h can be inferred from the energy dependent e/p ratio using a 
formula for F0

¡ Example of energy dissipation in a Pb absorber:
§ 42% invisible energy (nuclear breakup).
§ 43% charged particles.
§ 12% neutrons with KE ~ 1 MeV.
§ 3% photons with E ~ 1 MeV.

¡ The large fraction of invisible energy means that hadronic
calorimeters tend to be “undercompensating” (e/h>1).
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¡ Boost non-EM response by using depleted 
uranium (238U)
§ Extra energy contribution to the hadronic

component from fission of nuclei.
¡ Suppress the EM response

§ e.g. thin layers of plastic scintillator in a 
calorimeter with high Z absorber.

¡ Boost the response to low energy neutrons
§ e.g. active medium containing hydrogen.
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¡ In HEP experiments hadron calorimeters are used primarily for 
reconstruction of jets.
§ Generally: full calorimeter systems (EM + hadronic calorimeter).

¡ For example: jet energy estimated by summing energy contained 
in a cone of radius DR=Ö(Dh2+Dj2).

¡ Also: missing transverse energy.

¡ Jet energy resolution limited by effects from:
§ Details of algorithm used to define the jet (the parameters controlling 

the algorithm in the example above).
§ Fluctuations in the content of the jet (fluctuation in jet 

fragmentation).
§ Fluctuations of the underlying event (hadron colliders).
§ Fluctuations in pileup (hadron colliders at high luminosity).
§ Magnetic field (sweeps charged particles out of cone).
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¡ Another approach to improving jet energy resolution and missing 
ET resolution in general purpose detectors is to use the 
information from the tracker.
§ Low pT charged hadrons are generally much better measured by 

tracking system than by the hadron calorimeter.
§ Approach called “energy flow” or “particle flow”.

¡ Need to sort out calorimetric energy deposited by charged 
hadrons, from that produced by photons/pizeros – also energy 
deposited by neutral hadrons.
§ Emphasis of calorimetry for particle flow is fine granular for pattern 

recognition and separation of individual particle showers.
§ Current R&D for highly granular calorimeters at future possible linear 

colliders reported at calorimetry conferences e.g. Calor 2010
http://bes3.ihep.ac.cn/conference/calor2010/ have particle flow in 
mind.
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¡ Both the “jets plus tracks” and the more ambitious particle flow (which aims 
to give a complete event description in terms of particles) provide an 
improved jet energy resolution – particularly at lower jet ET.

¡ Validated with data  – for example in ET
miss resolution for W®ln events.
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¡ Longitudinal momentum unknown.
§ Partons are “sampled” from PDFs.

¡ System must be balanced in the transverse 
plane.
§ Q2 >> parton kT.

¡ Hermiticity allows to measure the transverse 
imbalance.
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¡ Sensitive to holes.
§ CMS ECAL map. è
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¡ Sensitive to noise.
§ Electronics regional 

events.
▪ Not global, not local.

§ Direct ionization of 
photo-detectors.
▪ “Spikes”.

¡ Sensitive to beam 
backgrounds.
§ Beam-halo 

interactions.
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¡ Check with events with no true missing 
energy:
§ Z production, photon+jets production.
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¡ Events with real missing energy
§ W leptonic decays è

¡ Significance of MET (SPF)
§ Good discriminator of events with real 

MET. î
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¡ Dielectrons from J/psi to Z
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¡ SM Higgs to diphoton search.
§ Photon energy resolution crucial to mass peak resolution.
§ Best mass resolution: ~1% (with just 1 year of running).
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¡ Particles have different interactions with matter.
§ Different detectors exploit those differences.
§ Eventually, it boils down to charged particle interactions, 

be it directly or through showers.
§ CMS has an excellent array of detectors.

¡ Calorimetry is quite involved.
§ Focus on energy reconstruction and resolution.
§ Electromagnetic and hadronic showers are very different.
§ CMS has a rather simple HCAL.
▪ Performance compensated by excellent tracker, via Particle flow 

methods.
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¡Particles, interactions and 
detectors.

¡Calorimetry and energy.
¡Trackers and momentum.
¡Trigger and acquisition.
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¡ Inner tracking
§ Measure charged particles disturbing them the least possible.

¡ Calorimetry
§ Measure as much as possible the energy of all particles.

¡ Outer tracking
§ Measure muons.
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Trying to retrace the path of charged particles, including far-reaching 
muons.
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¡ To find the hard interaction vertex. è
¡ To identify secondary vertices. î

§ Longer-lived particles.
¡ To measure trajectory of particles.

§ Momentum and energy loss of charged particles.
§ Connection to showers in calorimeters (electrons, 

photons).
§ Provide inner leg for muon reconstruction.
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¡ Solid state 
detectors.
§ Pixels for 

vertexing.
§ Strips for tracking.

¡ Gaseous 
detectors.
§ Drift tubes, etc for 

outer tracking.
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¡ Drift Tubes.
¡ Microstrip Gas Counters.
¡ Gas Electron Multipliers.
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¡ Dimuons from eta to Z
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Trying to keep one interesting collision, while rejecting 106 others.
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¡ Data rates are too high record every full 
event.
§ Reduce rates, typically by factor 104-105.
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¡ Not all information is needed to decide to if 
an event should be kept.
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¡ Information for level-1 decision is kept at a 
minimum.
§ Spatial resolution and energy resolution are much 

coarser than offline.
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¡ 300 Hz applies to the full event 
(A) stream.

¡ If you do not need the full event, 
drop content, gain rate.

¡ Used mostly in alignment and 
calibration:
§ Keep only tracks.
§ Keep only pion and eta diphotons

clusters. è
§ Keep only MET and electron data 

(W).
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¡ Tracking systems are crucial.
§ CMS is particularly good at it.
▪ Particle flow makes extensive use of tracking to 

disentangle the calorimeter deposit.

¡ Trigger is where analysis cuts start.
§ CMS has a simple two-level system.
§ CMS has a flexible system that has shown its 

trumps in 2011.
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