Feynman diagrams

igure 8.11: Factorisation in sIDIS: the bull diagram. All IR divergences are absorbed in the soft factor S, that hence only interacts with the TMD and FF. Note that

Lagrangians

The Mikowskian loop integrals are then the same as the Euclidian ones, up to a possible sign difference:
$\int \frac{\mathrm{d}^{\omega} k}{(2 \pi)^{\omega}} \frac{1}{\left(k^{2}-\Delta\right)^{n}}=\mathrm{i} \frac{(-)^{n}}{(4 \pi)^{\frac{\omega}{2}}} \frac{\Gamma\left(n-\frac{\omega}{2}\right)}{\Gamma(n)} \Delta^{\frac{\omega}{2}-n}$

$$
\binom{d \geq 2 n}{d \text { even }}=\mathrm{i} \frac{\Delta^{\frac{d}{2}-n}}{(4 \pi)^{\frac{d}{2}}} \frac{(-)^{\frac{d}{2}}}{(n-1)!\left(\frac{d}{2}-n\right)!}\left(\frac{1}{\epsilon}-\gamma_{E}+\sum^{\frac{d}{2}-n} \frac{1}{j}+\ln 4 \pi-\ln \Delta\right)
$$

$\int \frac{\mathrm{d}^{\omega} k}{(2 \pi)^{\omega}} \frac{k^{2}}{\left(k^{2}-\Delta\right)^{n}}=\mathrm{i} \frac{(-)^{n+1}}{(4 \pi)^{\frac{1}{2}}} \frac{\omega \mathrm{\Gamma}}{\frac{\left(n-\frac{\omega}{2}-1\right)}{\Gamma(n)} \Delta^{\frac{\omega}{2}+1-n}}$,
(B.25b)

$$
\binom{d \geq 2 n-2}{d \text { even }}=\mathrm{i} \frac{\mathrm{~A}^{\frac{d}{2}+1-n}}{(4 \pi)^{\frac{d}{2}}} \frac{\omega}{2} \frac{(-)^{\frac{d}{2}}}{(n-1)!\left(\frac{d}{2}+1-n\right)!}\left(\frac{1}{\epsilon}-\gamma_{E}+\sum^{\frac{d}{2}+1-n} \frac{1}{j}+\ln 4 \pi-\ln \Delta\right)
$$

$\int \frac{\mathrm{d}^{\omega} k}{(2 \pi)^{\omega}} \frac{k^{4}}{\left(k^{2}-\Delta\right)^{n}}=\mathrm{i} \frac{(-)^{n}}{(4 \pi)^{\frac{\omega}{2}}} \frac{\omega(\omega+2)}{4} \frac{\Gamma\left(n-\frac{\omega}{2}-2\right)}{\Gamma(n)} \Delta^{\frac{\omega}{2}+2-n}$

$$
\binom{d \geq 2 n-4}{d \text { even }}=\mathrm{i} \frac{\mathrm{~A}^{\frac{d}{2}+2-n}}{(4 \pi)^{\frac{d}{2}}} \frac{\omega(\omega+2)}{4} \frac{(-)^{\frac{d}{2}}}{(n-1)!\left(\frac{d}{2}+2-n\right)!}\left(\frac{1}{\frac{1}{\epsilon}-\gamma_{E}+\sum_{j}^{\frac{d}{2}+2-n}} \frac{1}{j}+\ln 4 \pi-\ln \right.
$$

We list some other common Minkowskian integrals:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{\omega} k}{(2 \pi)^{\omega}} \ln \left(k^{2}-a\right)=-\frac{\mathrm{i}}{(4 \pi)^{\frac{\omega}{2}}} \Gamma\left(-\frac{\omega}{2}\right) a^{\frac{\omega}{2}} \\
& \int \frac{\mathrm{~d}^{\omega} k}{(2 \pi)^{\omega}} \mathrm{e}^{a k^{2}-\mathrm{i} b \cdot k}=\frac{\mathrm{i}}{(4 \pi)^{\frac{\omega}{2}}} a^{-\frac{\omega}{2}} \mathrm{e}^{\frac{b^{2}}{4 a}} \\
& \int \frac{\mathrm{~d}^{\omega} k}{(2 \pi)^{\omega}} \frac{1}{\left(-k^{2}\right)^{\alpha}} \mathrm{e}^{-\mathrm{i} b \cdot k}=\frac{\mathrm{i}}{4^{\alpha} \pi^{\frac{\omega}{2}}} \frac{\Gamma\left(\frac{\omega}{2}-\alpha\right)}{\Gamma(\alpha)} \frac{1}{\left(-b^{2}\right)^{\frac{\omega}{2}-\alpha}}
\end{aligned}
$$

and stuff

\qquad his essentially splits the dipole in two at the point $z_{\text {, }}$, as is illustrated in the second diagram.

$\operatorname{tr}\left(t^{a} t^{x} t^{b} t^{x}\right)=-\frac{1}{4 N_{c}} \delta^{a b}$
$\operatorname{tr}\left(t^{b} t^{x} t^{y}\right) f^{a y x}=-\mathrm{i} \frac{N_{c}}{4} d^{a b}$, $\operatorname{tr}\left(t^{y} t^{z}\right) f^{a x y} f^{b z x}=-\frac{N_{c}}{2} \delta^{a b}$ $f^{x a y} f^{y c z} f^{z b w} f^{w c x}=\frac{N_{c}^{2}}{2} \delta^{a b}$ $f^{a r w w} f^{x b b y} f^{w w z} f^{z v x}=\frac{N_{c}^{2}}{2} \delta^{a b}$ $f^{a w v} f^{b z w} f^{f z z y} f^{v v x}=N_{c}^{2} c^{a b}$ $f^{x a y} f^{y c z} f^{z b w} f^{w c x}=\frac{N_{c}^{2}}{2} \delta^{a b}$,
$f^{v a w} f^{w b z} f^{x z y} f^{y v x}=N_{c}^{2} \delta^{a b}$
and similarly for the seven remaining diagrams.

Goals

 \title{¿Lagrangian?
 \title{
¿Lagrangian? ¿ Symmetries ? ¿ Symmetries ?
 ¿ Feynman diagrams? ¿ Standard Model ?
}

Goals

This is not a regular lecture \longrightarrow feel free to interrupt $\&$ ask questions

CERN

Feynman Diagrams

- Follow from perturbative expansion (see later)
- Particles are drawn on space-time plane
- Are an easy visual way to calculate elementary processes
- Order of diagram $=$ number of vertices $/ 2$
- Use Feynman rules to get mathematical expression

Feynman Diagrams

Different lines for different particle types:

- fermion (matter particle)

- antifermion (antimatter particle)

- photon мันาำ
- gluon g mommom
- weak boson

$W^{ \pm}, Z^{0}$
MOWN

Feynman Diagrams

gluon self-interactions
boson - fermion interactions

Feynman Diagrams

gluon self-interactions

boson - fermion interactions

proton \rightarrow neutron decay

That was nice and stuff, but let's try to be rigorous and build from first principles...

 \section*{\section*{Symmetries:
 \section*{\section*{Symmetries:

 Building the Lagrangian

 Building the Lagrangian

 正}

 正}

Basics

- basic components are fields
- just mathematical tools
- will give rise to particles
- principal quantity is the action, which is the integral of the Lagrangian:

$$
S=\int d^{4} \times \mathcal{L}(\mathbf{x}, \boldsymbol{\phi}, \partial \phi)
$$

- all paths possible (simultaneous), but path with least action is favoured
- minimising action leads to equations of motion

Lagrangian?

- is kinetic energy minus potential energy

$$
\mathcal{L}=\mathrm{T}-\mathrm{V}
$$

- classical example: spring

$$
\mathcal{L}=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-\frac{1}{2} k x^{2} \Rightarrow x=x_{0} \cos \sqrt{\frac{k}{m}} t
$$

- field example: free electron field

$$
\mathcal{L}=i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi \quad \Rightarrow \quad(i \not \partial-m) \psi=0 \quad(Q M)
$$

Lagrangian!

- kinetic terms are quadratic and have derivatives $\bar{\psi} \not \partial \psi, \partial_{\mu} \phi \partial^{\mu} \phi, \ldots$
- potential terms are what is left
- special type: mass terms: $m \bar{\psi} \psi, \mathrm{~m}^{2}|\phi|^{2}, \ldots$ quadratic without derivatives
- others are interaction terms $\bar{\psi} A \Psi, \ldots$

Symmetries

- leave theory unchanged
- symmetry => conservation

Emmy Noether

- homogeneity of space
=> translational invariance
\Rightarrow momentum conservation
- isotropy of space
=> rotational invariance
=> angular momentum conservation

Symmetries

- in quantum mechanics, ψ is an amplitude
- not physical
- $|\psi|^{2}$ is probability, physical
- phase is undetermined, because we can scale $\psi \rightarrow e^{i a} \psi$, then $\bar{\psi} \rightarrow e^{-i a} \bar{\psi}$, such that $|\psi|^{2} \rightarrow|\psi|^{2}$
=> invariant!

Symmetries

- similar in quantum field theories: $i \bar{\psi} \not \partial \psi \rightarrow i \bar{\psi} \not \partial \psi \quad m \bar{\psi} \psi \rightarrow m \bar{\psi} \psi$ in other words $\mathcal{L}=\mathcal{L}^{\prime}$
- free electron field
=> conservation of electric charge
- BUT... phase a can depend on spacetime coordinates: $a=a(x)$
$i \bar{\psi} \not \partial \psi \rightarrow i \bar{\psi} \not \partial \psi-\bar{\psi}(\not \partial a) \psi \quad \mathcal{L}^{\prime}=\mathcal{L}-\bar{\psi}(\not \partial a) \psi$
\Rightarrow no longer invariant!

Lagrangian

- add term $g \bar{\psi} A \psi$ to the Lagrangian - with property $A_{\mu} \rightarrow A_{\mu}+1 / g \partial_{\mu} a$
- because then $g \psi A \psi \rightarrow g \Psi A \psi+\psi(\not \partial a) \psi$
- invariant !
- but new field also needs kinetic terms
- symmetry \Rightarrow conserved tensor:

$$
\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{V} \mathbf{A}_{\mu}
$$

- its square will be kinetic term:

$$
-\frac{1}{4} F_{\mu v} F^{\mu \nu}
$$

$$
\begin{aligned}
& \text { QED: } \\
& \text { From the Lagrangian } \\
& \text { to a full theory }
\end{aligned}
$$

QED

Full Lagrangian for Quantum Electro Dynamics:

$$
\mathcal{L}_{Q E D}=i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi+g \bar{\psi} A \psi-\frac{1}{4} F_{\mu V} F^{\mu v}
$$

electron kinetic term
photon kinetic term electron mass term electron-photon interaction term

QED

Full Lagrangian for Quantum Electro Dynamics:

$$
\mathcal{L}_{Q E D}=i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi+g \bar{\psi} A \psi-\frac{1}{4} F_{\mu V} F^{\mu V}
$$

'interaction' theory
$\mathcal{L}_{\text {QED }}=\mathcal{L}_{0}+\mathcal{L}_{\mathrm{I}}$
Keep \mathcal{L}_{0} exact, but expand $\mathcal{L}_{\mathrm{I}} \Rightarrow$ perturbation theory

Free Theory

Propagation of an electron from x to y :

$$
\langle 0| \psi(y) \bar{\psi}(x)|0\rangle=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \psi(y) \bar{\psi}(x) e^{i s_{0}}
$$

Propagation of a photon from x to y :
x mum y

$$
\langle 0| A_{\mu}(x) A_{\mu}(y)|0\rangle=\int \mathcal{D} A_{\mu} A_{\mu}(x) A_{\mu}(y) e^{i S_{0}}
$$

Free Theory

Easily generalised to more points:

$$
\begin{aligned}
& x_{1} \longrightarrow y_{1} \text { and } x_{1} \\
& x_{2} \quad y_{1} \\
& \langle 0| \psi_{y_{1}} \psi_{y_{2}} \bar{\psi}_{x_{1}} \bar{\psi}_{x_{2}}|0\rangle=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \psi_{y_{1}} \psi_{y_{2}} \bar{\psi}_{x_{1}} \bar{\psi}_{x_{2}} e^{s_{0}}
\end{aligned}
$$

Interaction

- Add interaction part from action (Lagrangian) to the exponential $e^{S_{0}+S_{I}}$
- Equations are not solvable anymore
=> expand interaction part:

$$
e^{S_{I}} \approx 1+S_{I}+\frac{1}{2} S_{I}^{2}+\ldots
$$

- Propagation of electron from x to y is now:
$\langle\psi(y) \bar{\psi}(x)\rangle=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A_{\mu} \psi(y) \bar{\psi}(x) e^{S_{0}}\left(1+S_{I}+\frac{1}{2} S_{I}^{2}+\ldots\right)$

Interaction

- Propagation of electron from x to y is now:
$\langle\psi(y) \bar{\psi}(x)\rangle=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A_{\mu} \psi(y) \bar{\psi}(x) e^{S_{0}}\left(1+S_{I}+\frac{1}{2} S_{I}^{2}+\ldots\right)$
- Take the second order as example:

$$
S_{I}^{2}=g^{2} \int d z d u(\bar{\Psi} A \psi)_{z}(\bar{\Psi} A \psi)_{u}
$$

- So we have electron propagation from x to z, from z to u, and from u to y. We also have photon propagation from z to u. Schematically:

Interaction

- Other possibility:

z munn u

- Vacuum diagrams
\Rightarrow These are unwanted and have to be cancelled:

$$
\langle\psi(y) \bar{\psi}(x)\rangle=\frac{\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \psi(y) \bar{\psi}(x) e^{s}}{\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{s}}
$$

Interaction

- So the full propagator is:

- This can be extended to any number of particles, i.e. electron-electron collision:

Feynman Rules

Full Lagrangian for Quantum Electro Dynamics:

$$
\mathcal{L}_{Q E D}=i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi+g \bar{\psi} A \Psi-\frac{1}{4} F_{\mu V} F^{\mu v}
$$

$$
\begin{aligned}
& \text { SM: } \\
& \text { The Standard Model } \\
& \text { of particle physics }
\end{aligned}
$$

Lagrangian

- We can easily extend our theory by adding new parts to our Lagrangian:

$$
\mathcal{L}=\mathcal{L}_{Q E D}+\mathcal{L}_{Q F D}+\mathcal{L}_{Q C D}+\ldots
$$

- QFD (weak force) and QCD (strong force) are very similar to QED. They only add two different types of interaction terms:
$A_{\mu} A_{v} \partial^{\mu} A^{v}$

$$
A_{\mu} A_{v} A^{\mu} A^{v}
$$

Lagrangian

Let's have a coffee with the Standard Model of particle physics! J Woithe, GJ Wiener, FF VdV, Phys Educ 52 (2017) no 3, 034001

Particle Zoo

source: http://www.physik.uzh.ch/groups/serra/StandardModel.html

Symmetries

- Electric charge, hypercharge, colour charge
- 4-momentum (restriction on possible total mass)
- Lepton number (total and individual)
- Baryon number
- NOT meson number
- Isospin
-
- Example: Muon decay

Interactivity

Did you pay attention?

Exercises

- Draw Feynman diagrams for the following processes using the weak interaction:

$$
\begin{aligned}
\pi^{+} & \rightarrow \mu^{+}+v_{\mu} \\
\Lambda & \rightarrow p+e^{-}+\bar{v}_{e} \\
\mathrm{~K}^{0} & \rightarrow \pi^{+}+\pi^{-} \\
\pi^{+} & \rightarrow \pi^{0}+e^{+}+v_{e}
\end{aligned}
$$

- Draw Feynman diagrams for the following processes using the strong interaction:

$$
\begin{aligned}
\omega^{0} & \rightarrow \pi^{+}+\pi^{-}+\pi^{0} \\
\rho^{0} & \rightarrow \pi^{+}+\pi^{-} \\
\Delta^{++} & \rightarrow \mathrm{p}+\pi^{+}
\end{aligned}
$$

Challenge Exercise

A proton target is hit by a proton beam with momentum $|p|=12 \mathrm{GeV} / \mathrm{c}$. In one specific event, 6 tracks are observed. Two of these point to the interaction point and from their curvature we know these are positively charged particles. The other tracks form two pair of opposite charge. Both pairs are visible only a few cm past the interaction point. It is hence clear that two neutral particles were produced that later decayed into charged particles.

1. Make a sketch of this event
2. Discuss which mesons and baryons would be possible candidates for these decays (use the particle data - mass and lifetime - from the PDG booklet. Look for decay channels into two charged particles)
3. The measured momenta for the two pairs are:
a. $\left|p_{+}\right|=0.68 \mathrm{GeV} / \mathrm{c} \quad\left|p_{-}\right|=0.27 \mathrm{GeV} / \mathrm{c} \quad \theta_{+-}=11^{\circ}$
b. $\left|p_{+}\right|=0.25 \mathrm{GeV} / \mathrm{c} \quad\left|p_{-}\right|=2.16 \mathrm{GeV} / \mathrm{c} \quad \theta_{+-}=16^{\circ}$
with a measurement error of 5%. Calculate the total energy to decide with hypothesis from 2. agrees with these measurements
4. Use these results to draw a Feynman diagram. Is this the only possible solution?

Questions?

frederik@cern.ch*

*reply guaranteed within the decade

C'est tout

Thanks for your attention!

