Probing Minimal Grand Unification through Gravitational Waves

Shaikh Saad

University of California Irvine, June 26-30

based on: JHEP04 (2023) 058

GW probes of SO(10)

Outline

- Yukawa Sector of Minimal SO(10) Unification
- Symmetry breaking and Gravitational Waves
- Proton decay and Coupling Unification

Searching for a Minimal Yukawa Sector

• Most constructions: complex 10_H Babu, Mohapatra 1992

 \rightarrow Reducing number of parameters: $SO(10) \times U(1)_{PQ}$

- * Our proposal: only SO(10) gauge symmetry Babu, Bajc, Saad 2016
- $\rightarrow\,$ No new fermions beyond the three families of chiral 16s.
- \rightarrow Non-supersymmetric framework.

Proposal: Minimal Yukawa Sector

- Fermion bilinear: $16 \times 16 = 10_s + 120_a + 126_s$
- 10 and 120 are real representations of SO(10)
- 126 is complex representation of SO(10)
- The most general Yukawa sector

 $\mathcal{L}_{yuk} = 16_F (Y_{10}^i 10_H^i + Y_{120}^j 120_H^j + Y_{126}^k \overline{126}_H^k) 16_F$

$$i = 1, 2, ... n_{10}$$
, $j = 1, 2, ... n_{120}$ and $k = 1, 2, ... n_{126}$

 $# \{n_{10}, n_{120}, n_{126}\} = \{1, 1, 1\}$

Babu, Bajc, Saad 2016

Fermion masses

$$M_{U} = D + r_{1}S + e^{i\phi}A$$

$$M_{D} = D + r_{1}S + e^{i\phi}A$$

$$M_{E} = D - 3r_{1}S + r_{2}A$$

$$M_{\nu_{D}} = D - 3S + r_{2}^{*}e^{i\phi}A$$

$$M_{\nu_{R}} = c_{R}S$$

$$diag(M_{1}, M_{2}, M_{3})$$

$$M_N = -M_{\nu_D}^T M_{\nu_R}^{-1} M_{\nu_D}.$$

Babu, Bajc, Saad 2016

Fermion Fit

Observables	Values at M_Z scale			Values at M_{GUT} scale	
$(\Delta m_{ij}^2 \text{ in } eV^2)$	Input	Best Fit: NO	Best Fit: IO	NO	IO
$y_u / 10^{-6}$	6.65 ± 2.25	6.65	6.71	2.85	2.87
$y_{c}/10^{-3}$	$3.60 {\pm} 0.11$	3.60	3.60	1.54	1.54
y_t	$0.986{\pm}0.0086$	0.986	0.986	0.48	0.48
$y_d / 10^{-5}$	$1.645 {\pm} 0.165$	1.645	1.675	0.73	0.74
$y_{s}/10^{-4}$	3.125 ± 0.165	3.125	3.146	1.38	1.39
$y_b / 10^{-2}$	$1.639 {\pm} 0.015$	1.639	1.639	0.637	0.637
$y_{e}/10^{-6}$	$2.7947 {\pm} 0.02794$	2.7947	2.7899	2.8873	2.8817
$y_{\mu}/10^{-4}$	$5.8998 {\pm} 0.05899$	5.8998	5.9021	5.924	5.894
$y_{\tau}/10^{-2}$	$1.0029 {\pm} 0.01002$	1.0029	1.0012	0.985	0.989
$ heta_{12}^{ m CKM}/10^{-2}$	22.735 ± 0.072	22.735	22.739	22.73	22.74
$\theta_{23}^{\rm CKM}/10^{-2}$	$4.208 {\pm} 0.064$	4.208	4.204	4.79	4.79
$ heta_{13}^{ m CKM}/10^{-3}$	$3.64{\pm}0.13$	3.64	3.64	4.15	4.15
δ^{CKM}	$1.208 {\pm} 0.054$	1.208	1.204	1.207	1.204
$\Delta m^2_{21}/10^{-5}$	7.425 ± 0.205	7.425	7.433	9.714	950.84
$\Delta m^2_{31}/10^{-3}~({\rm NO})$	$2.515 {\pm} 0.028$	2.515	-	12.909	-
$\Delta m^2_{32}/10^{-3}~({ m IO})$	-2.498 ± 0.028	-	-2.497	-	-12.515
$\sin^2 \theta_{12}$	$0.3045 {\pm} 0.0125$	0.3045	0.3053	0.308	0.177
$\sin^2 \theta_{23} (\text{NO})^*$	$0.5705 {\pm} 0.0205$	0.5726	-	0.484	-
$sin^2 \theta_{23}$ (IO)*	$0.576 {\pm} 0.019$	-	0.5819	-	0.542
$\sin^2 \theta_{13}$ (NO)	$0.02223 {\pm} 0.00065$	0.02223	-	0.007	-
$\sin^2 \theta_{13}$ (IO)	$0.02239 {\pm} 0.00063$	-	0.02238	-	0.0223
χ^2	-	$3 imes 10^{-8}$	2.77^{\dagger}	-	-

Features: M_R

Quantity	Best fit prediction						
	NO	IO					
(m_1, m_2, m_3)	(0.00014, 0.0086, 0.0501) eV	(0.04922, 0.04997, 0.00038) eV					
$(\sum_i m_i, m_\beta, m_{\beta\beta})$	(0.0589, 0.0088, 0.0016) eV	(0.099, 0.041, 0.033) eV					
$(\delta, \varphi_1, \varphi_2)$	$(326.4, 109.0, 94.7)^{\circ}$	$(209.5, 164.4, 343.4)^{\circ}$					
(M_1, M_2, M_3)	$(2.13 \times 10^5) 6.46 \times 10^{11} 2.28 \times 10^{14} $ GeV	$(1.31 \times 10^4) 6.42 \times 10^{11} 2.37 \times 10^{14})$ GeV					

• $M_3 \sim 10^{14}$ GeV (seesaw scale)

- $M_2 \sim rac{m_c}{m_t} M_3 \sim 10^{11}~{
 m GeV}$
- $M_{2,3} \gg M_1 \sim 10^5 {
 m GeV}$
- $M_1^{
 m IO} \sim M^{
 m NO}/10$

Importance of RGE running

Features: Proton decay correlations

Pulsar timing data

- NANOGrav : 12.5 yrs of pulsar timing data 2020
- $\rightarrow\,$ strong evidence for a stochastic common-spectrum process
- ightarrow Interpreted as a GW signal: $A \sim {\cal O}(10^{-15})$ @ $f \sim 1/yr$

★ Cosmic string model gives an excellent fit

Ellis, Lewicki 2020

$$\rightarrow G\mu = (2 \times 10^{-11} - 3 \times 10^{-10})$$
@ 95% C.L.

- * Similar hints from PPTA 2021, EPTA 2021, and IPTA 2022
- # GW energy density

Fu et. al. 2022

$$\left(\Omega_{\mathrm{GW}}(f)h^2\right)_{\mathrm{PTA}}pprox 2.02\cdot 10^{-10}$$

New results upcoming

Upcoming Announcement

On June 29th, the NANOGrav collaboration will be making a major announcement during a livestreamed event! This is in coordination with announcements by other PTAs around the globe.

Stay tuned and check this space for updates!

Higgs sector

* Minimal scenario to provide cosmic string network

$$SO(10) \xrightarrow{M_X} SU(4)_C \times SU(2)_L \times SU(2)_R \times D$$

$$\xrightarrow{M_I} SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$\xrightarrow{M_{II}} SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$\xrightarrow{M_{EW}} SU(3)_C \times SU(2)_L \times U(1)_{em}$$

the breaking by 126_H leaves a remnant Z_2 symmetry (not broken by tensor representations)

GW from stable cosmic string network

 $G\mu = 4.22 \times 10^{-38} v_R^2$

String scale and fermion mass fit

• CMB: $G\mu < 1.1 imes 10^{-7}$ Charnock et. al. 2016 $\Rightarrow M_{II} \lesssim 2 imes 10^{15}$ GeV

• LIGO: 2021 $G\mu \lesssim 10^{-8}~(f \sim \mathcal{O}(10)~{
m Hz}) \Rightarrow M_{II} \lesssim 5 imes 10^{14}~{
m GeV}$

* Neutrino mass fit: $M_3 \lesssim 10^{15}$ GeV

* Up-quark mass fit: $M_3 \gtrsim 2 \times 10^{13}$ GeV

* Valid:
$$M_3 = [2 imes 10^{13} - 10^{15}]$$
 GeV

String scale and fermion mass fit

 $(Y_{126})_{33}^{max} = 2$ $(Y_{126})_{22}^{min} = 0.48$

Consistent SO(10) and GW fits

• excellent fit for: 8 A×10⁻¹⁵ $\rightarrow \Omega_{\rm GW} h^2 \in (2,6) \times 10^{-10}$ characteristic strain amp, A $@ 2\sigma CL$ • Corresponds to $ightarrow ~G\mu \in$ (4.9, 6.9) imes 10⁻¹¹ Restricted seesaw scale: 4.0

$$ightarrow v_R \in (3.4, 4.1) imes 10^{13} \text{ GeV}$$

Saad 2022

GW probes of SO(10)

Consistent SO(10) and GW fits

Saad 2022

GW from SO(10): consistent with proton decay?

Compatibility with a small threshold correction

Upshot

Summary

- * Minimal Yukawa sector: $\{n_{10}, n_{120}, n_{126}\} = \{1, 1, 1\}$
- * Minimal SSB sector (cosmic string): $45_H + 54_H$
- * Dominant modes: $p \to \overline{\nu}\pi^+$ and $p \to e^+\pi^0$
- * Fermion mass fit: $M_3 = [2 \times 10^{13} 10^{15}]$ GeV

*
$$M_2 \sim \frac{m_c}{m_t} M_3 \sim 10^{11} \text{ GeV}$$

- * $M_{2,3} \gg M_1 \sim 10^5 {
 m ~GeV}$, $M_1^{
 m IO} \sim M^{
 m NO}/10$
- * GW/PTAs: $v_R \in (3.4, 4.1) \times 10^{13} \text{ GeV}$
- Fully testable in a number of gravitational wave observatories

THANK YOU!

$$\frac{|S|}{v} \sim \begin{pmatrix} 4.5 \times 10^{-10} & 0. & 0.\\ 0. & 1.3 \times 10^{-3} & 0.\\ 0. & 0. & 4.8 \times 10^{-1} \end{pmatrix}$$
$$\frac{|D|}{v} \sim \begin{pmatrix} 3.0 \times 10^{-6} & 2.8 \times 10^{-5} & 1.7 \times 10^{-4}\\ 2.8 \times 10^{-5} & 2.4 \times 10^{-4} & 2.7 \times 10^{-3}\\ 17 \times 10^{-4} & 2.7 \times 10^{-3} & 2.6 \times 10^{-3} \end{pmatrix}$$
$$\frac{|A|}{v} \sim \begin{pmatrix} 0 & 2.3 \times 10^{-5} & 1.2 \times 10^{-4}\\ 2.3 \times 10^{-5} & 0 & 2.5 \times 10^{-3}\\ 1.2 \times 10^{-4} & 2.5 \times 10^{-3} & 0 \end{pmatrix}$$

$$\begin{aligned} \frac{|S|}{v} &\sim \begin{pmatrix} 4.5 \times 10^{-10} & 0. & 0. \\ 0. & 1.3 \times 10^{-3} & 0. \\ 0. & 0. & 4.8 \times 10^{-1} \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \\ \\ \frac{|D|}{v} &\sim \begin{pmatrix} 3.0 \times 10^{-6} & & \\ & 2.4 \times 10^{-4} & \\ & & 2.6 \times 10^{-3} \end{pmatrix} \sim \begin{pmatrix} y_{d,e,u} & 0 & 0 \\ 0 & y_{s,\mu} & 0 \\ 0 & 0 & y_b \end{pmatrix} \\ \\ M_U &\sim S, \quad M_{D,E} \sim D, \quad M_2 \sim \frac{y_c}{y_t} M_3, \quad M_1 \ll M_{2,3} \end{aligned}$$

- At the GUT scale $m_t/m_b\sim 75$
- $y_t \sim S_{33}/v$
- $y_b \sim (D_{33} + r_1 S_{33}) / v$
- $(D_{33} + r_1 S_{33}) / S_{33} \sim 10^{-2}$
- $D_{33}, r_1 S_{33} \ll S_{33} \sim m_t$

•
$$M_3 = v_R(Y_{126})_{33}$$
 determines String scale

$$\begin{aligned} \frac{|M_{\nu_D}|}{v} &\sim (D-3S)/v \\ &= \begin{pmatrix} 3.1 \times 10^{-6} & 2.8 \times 10^{-5} & 1.7 \times 10^{-4} \\ 2.8 \times 10^{-5} & 2.73348 \times 10^{-3} \\ 1.7 \times 10^{-4} & 2.73348 \times 10^{-3} \\ &- \begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 \times 10^{-3} & 0 \\ 0 & 0 & 1.4 \end{pmatrix} \end{aligned}$$

$$\begin{split} M_N &= -M_{\nu_D} \begin{pmatrix} M_1^{-1} & & \\ & M_2^{-1} \\ & & M_3^{-1} \end{pmatrix} M_{\nu_D}^T \\ & & \begin{pmatrix} \frac{10^{-7}}{M_1} + 10^{-15} & \frac{10^{-7}}{M_1} + 10^{-14} & \frac{10^{-6}}{M_1} + 10^{-13} \\ \frac{10^{-7}}{M_1} + 10^{-14} & \frac{10^{-7}}{M_1} + 10^{-12} & \frac{10^{-6}}{M_1} + 10^{-12} \\ \frac{10^{-6}}{M_1} + 10^{-13} & \frac{10^{-6}}{M_1} + 10^{-12} & \frac{10^{-5}}{M_1} + 10^{-10} \end{pmatrix} \end{split}$$

Works if $M_1 \sim 10^5$ GeV ! (IO works if first column and row have significant entries: $M^{\rm IO} \sim M^{\rm NO}/10$)