Gravitational wave background from vacuum and thermal fluctuations during axion-like inflation

Philipp Klose

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland

28th International Symposium on Particles, Strings and Cosmology

arXiv:2210.11710

Collaborators: Simona Procacci, Mikko Laine

$$\mathcal{L} \supset rac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - V_{0}(\varphi) - \mathcal{G}_{\mu
u} \mathcal{G}^{\mu
u} - rac{\varphi}{f_{a}} \chi \qquad \chi = rac{lpha_{s}}{16\pi} \widetilde{\mathcal{G}}_{\mu
u} \mathcal{G}^{\mu
u}$$

$$\mathcal{L} \supset rac{1}{2} \partial_{\mu} arphi \partial^{\mu} arphi - V_{0}(arphi) - \mathcal{G}_{\mu
u} \mathcal{G}^{\mu
u} - rac{arphi}{f_{a}} \chi \qquad \chi = rac{lpha_{s}}{16\pi} \widetilde{\mathcal{G}}_{\mu
u} \mathcal{G}^{\mu
u}$$

Efficient reheating while shift symmetry protects flat potential
 Natural model for inflation

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - V_{0}(\varphi) - G_{\mu\nu} G^{\mu\nu} - \frac{\varphi}{f_{a}} \chi \qquad \chi = \frac{\alpha_{s}}{16\pi} \widetilde{G}_{\mu\nu} G^{\mu\nu}$$

- Efficient reheating while shift symmetry protects flat potential
 Natural model for inflation
- Abelian case: Preheating can overproduce gravitational waves (GW) $\Rightarrow \Delta N_{\text{eff}}$ too large (*cf.* arXiv:1909.12842)

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - V_{0}(\varphi) - G_{\mu\nu} G^{\mu\nu} - \frac{\varphi}{f_{a}} \chi \qquad \chi = \frac{\alpha_{s}}{16\pi} \widetilde{G}_{\mu\nu} G^{\mu\nu}$$

- Efficient reheating while shift symmetry protects flat potential
 Natural model for inflation
- Abelian case: Preheating can overproduce gravitational waves (GW) $\Rightarrow \Delta N_{\text{eff}}$ too large (*cf.* arXiv:1909.12842)

What about non-Abelian case?

Philipp Klose

Non-Abelian gauge bosons can thermalize

- \blacksquare Inflaton $\phi \rightarrow gg$ decays can sustain non-diluting gauge sector
- If gauge sector thermalizes, universe heats during inflation ⇒ Warm inflation:

 $\Gamma = {
m inflaton}$ friction / $H = {
m Hubble}$ rate / $V_T = \partial_T V$ / $V_\phi = \partial_\phi V$

Non-Abelian gauge bosons can thermalize

- \blacksquare Inflaton $\phi \rightarrow gg$ decays can sustain non-diluting gauge sector
- If gauge sector thermalizes, universe heats during inflation ⇒ Warm inflation:

 $\Gamma=$ inflaton friction / H= Hubble rate / $V_{T}=\partial_{T}V$ / $V_{\phi}=\partial_{\phi}V$

\Rightarrow Qualitatively different GW production

Philipp Klose

Warm inflation GW background

Master formula primordial tensor power spectrum:

 Π_k = thermal production rate / $H_{\star}(k)$ = Hubble rate at Horizon exit / t_e = inflation end time / G = Newton const.

Our work:

- We combined vacuum and thermal fluctuations
- We extended propagator Δ_k from DeSitter to general background solution

Philipp Klose

- **EXAMPLE 1** LISA Modes exit Horizon during inflation! $(k/a(t_e) \ll 1)$
 - \Rightarrow Two key consequences:

- LISA Modes exit Horizon during inflation! (k/a(t_e) ≪ 1)
 ⇒ Two key consequences:
 - **1** Momentum independent propagator $\lim_{k\to 0} \Delta_k(t_e, t')$ (and transfer from P_T to present day spectrum)

- LISA Modes exit Horizon during inflation! (k/a(te) ≪ 1)
 ⇒ Two key consequences:
 - 1 Momentum independent propagator $\lim_{k\to 0} \Delta_k(t_e, t')$ (and transfer from P_T to present day spectrum)
 - 2 $k \ll \alpha^2 T \Rightarrow$ Hydrodynamics governs thermal fluctuations \Rightarrow Rate $\lim_{k\to 0} \prod_k = \eta T$ measures shear viscosity $\eta \propto T^3$

- LISA Modes exit Horizon during inflation! (k/a(te) ≪ 1)
 ⇒ Two key consequences:
 - 1 Momentum independent propagator $\lim_{k\to 0} \Delta_k(t_e, t')$ (and transfer from P_T to present day spectrum)
 - 2 $k \ll \alpha^2 T \Rightarrow$ Hydrodynamics governs thermal fluctuations \Rightarrow Rate $\lim_{k\to 0} \prod_k = \eta T$ measures shear viscosity $\eta \propto T^3$
 - \Rightarrow Universal frequency shape $\propto f^3$ + strong T_{\max} dependence

- LISA Modes exit Horizon during inflation! (k/a(t_e) ≪ 1)
 ⇒ Two key consequences:
 - 1 Momentum independent propagator $\lim_{k\to 0} \Delta_k(t_e, t')$ (and transfer from P_T to present day spectrum)
 - 2 $k \ll \alpha^2 T \Rightarrow$ Hydrodynamics governs thermal fluctuations \Rightarrow Rate $\lim_{k\to 0} \prod_k = \eta T$ measures shear viscosity $\eta \propto T^3$
 - \Rightarrow Universal frequency shape $\propto f^3$ + strong T_{\max} dependence

But what is T_{max} ?

CMB constrains model parameters

We fix T_{max} for minimal scenario:

- QCD-like gauge fields
- Thermal cosine potential $V = (m_0^2 + m_T^2) f_b^2 (1 \cos \phi / f_b)$
 - $\Rightarrow \text{ Fit mass } m_0 \text{ and decay constant } f_b \text{ to CMB power spectra} \\ (\text{scalar amplitude } A_s, \text{ spectral tilt } n_s, \text{ tensor-to-scalar ratio } r)$

CMB reference frequency $f \ll 10^{-15} \, \text{Hz}$ (Horizon exit 60 e-folds before end of inflation) \Rightarrow thermal effects only impact background solution:

$$A_{S} = \frac{H_{\star}^{4}}{4\pi^{2}\dot{\phi}_{\star}^{2}} , \qquad n_{S} = 1 + \frac{4\dot{H}_{\star}}{H_{\star}^{2}} , \qquad r = \frac{A_{T}}{A_{S}} = 64\pi G \frac{\dot{\phi}_{\star}^{2}}{H_{\star}^{2}}$$

 $H_{\star},~\dot{\phi}_{\star}=$ Horizon exit Hubble rate, field velocity in full background solution

Minimal model predicts $T_{\rm max} \approx 5 \cdot 10^{-9} m_{\rm pl}$

• CMB constraints fix $f \approx 1.25 m_{\rm pl}$ and $m = 1.09 \cdot 10^{-6} m_{\rm pl}$ $\stackrel{g_{\star}=17}{\Rightarrow}$ Background solution predicts $T_{\rm max}$

Philipp Klose

Warm axion-like inflation GWB

PASCOS 2023 6/8

No overproduction of gravitational waves

- T_{max} too small to produce observable signal
- $T \ll m_{
 m ALP} \Rightarrow$ Gauge bosons dominate shear viscosity $\eta \propto T^3$

Philipp Klose

• GWs exhibit universal $\propto f^3$ frequency shape

+ strong T_{max} dependence

GWs exhibit universal ∝ f³ frequency shape + strong T_{max} dependence

• We identified benchmark point for minimal axion-like warm inflation:

$$f_b = 1.25 m_{\rm pl}$$
 $m = 1.09 \cdot 10^{-6} m_{\rm pl}$

$$\Rightarrow$$
 Realistic estimate $T_{\max} \overset{g_{\star}=17}{\approx} 4 \cdot 10^{-9} m_{\rm pl}$

GWs exhibit universal ∝ f³ frequency shape + strong T_{max} dependence

• We identified benchmark point for minimal axion-like warm inflation:

$$f_b = 1.25 m_{\rm pl}$$
 $m = 1.09 \cdot 10^{-6} m_{\rm pl}$

$$\Rightarrow$$
 Realistic estimate $T_{\max} \overset{g_{\star}=17}{\approx} 4 \cdot 10^{-9} m_{\rm pl}$

 No overproduction of gravitational waves (reheating contribution checked in arXiv:2201.02317)

GWs exhibit universal ∝ f³ frequency shape + strong T_{max} dependence

• We identified benchmark point for minimal axion-like warm inflation:

$$f_b = 1.25 m_{\rm pl}$$
 $m = 1.09 \cdot 10^{-6} m_{\rm pl}$

$$\Rightarrow$$
 Realistic estimate $T_{\max} \overset{g_{\star}=17}{\approx} 4 \cdot 10^{-9} m_{\rm pl}$

 No overproduction of gravitational waves (reheating contribution checked in arXiv:2201.02317)

Further prospects: Out-of-equilibrium corrections, Higher T_{max} (cf. arXiv:2303.17973)

Philipp Klose

Thank you for your attention!

Backup slides