RECENT RESULTS OF DARK SECTOR SEARCHES WITH THE BABAR EXPERIMENT

Brian Shuve

on behalf of the BABAR Collaboration bshuve@g.hmc.edu

PASCOS – UC Irvine June 28, 2023

 $^{\rm TM}$ and © Nelvana, all rights reserved

BABAR EXPERIMENT

- 432/fb $\Upsilon(4S)$ onpeak ($\sqrt{s} = 10.58$ GeV)
 - ~500 million B meson pairs
- smaller samples at $\Upsilon(2S)/\Upsilon(3S)$ and off-peak
- High luminosity, low backgrounds make BABAR an ideal experiment for discovering MeV-GeV scale hidden particles

HIDDEN SECTOR DM

• For thermal dark matter masses below a few GeV, a low-mass mediator is needed for observed abundance e^+ <u>B. Lee, S. Weinberg, PRL 39, 165 (1977)</u>

 $e\varepsilon$

BABAR 2017

invisible decays:

 $K \rightarrow \pi \nu \nu$

• Many searches focus on minimal, predictive "portals", such as a dark photon (A') with kinetic mixing ε

visible decays: $A' \rightarrow \ell^+ \ell^-$

 10^{-2}

 $(g-2) \pm 20$

NA6

favored

(g-2)

SEARCHES PRESENTED TODAY

<u>Axion-like</u> particles (ALPs)

 B mesons decay to ALP via coupling to gauge bosons

BaBar, PRL 128, 131802 (2022), arXiv:2111.01800

DM bound states

- dark photon + large coupling to DM
- search for DM bound states

BaBar, PRL 128, 021802 (2022), arXiv:2106.08529

B-Mesogenesis

- model of QCD-scale baryogenesis
- B mesons decay to baryon + dark baryon

<u>BaBar, PRD 107, 092001 (2023)</u> <u>BaBar, arXiv:2306.08490</u> (submitted to PRL)

- Axion-like particles (ALPs): pseudoscalars that couple to pairs of gauge bosons
- Ubiquitous in BSM theories, ideal hidden sector mediators
- If ALP couples to SU(2) gauge bosons, it can be produced in rare *B* meson decays:

- Reconstruct $B^\pm\to K^\pm a,\,a\to\gamma\gamma\,$ candidates, look for narrow peak in diphoton mass; assume prompt decays
- Train separate boosted decision trees to reject dominant backgrounds

- For each mass hypothesis, fit data in a window whose size is determined by ALP mass. We do not consider signals near $\eta,\,\eta'$
- Background modeled as a smooth continuum plus a peaking component where relevant
- We see no significant signal
- We find that we are sensitive to ALPs with **finite lifetime**

$$\Gamma_a = \frac{g_{aW}^2 \sin^4 \theta_W \, m_a^3}{64\pi}$$

- Re-do fits for long-lifetime signals and set 90% CL limits on the signal branching fraction as functions of ALP mass and lifetime
- These are converted to limits on the coupling: improve on previous limits by up to two orders of magnitude!

DM BOUND STATE: DARKONIUM

 Consider DM coupled to a dark photon: DM can form bound states (darkonia)!

9

• We search for the lightest vector darkonium, Υ_D

 Use multivariate analysis to separate signal from background

DARKONIUM RESULTS

- Repeat analysis for long-lived A' decays, including information related to A' decay position
- In absence of significant signal, set 90% CL upper limit on kinetic mixing ε as function of DM coupling $\alpha_D \equiv g_D^2/4\pi$

B-MESOGENESIS

- Mechanism for baryogenesis & DM where regular + dark baryon asymmetries produced in CPV decays of B mesons
 <u>G. Elor, M. Escudero, A. Nelson, PRD 99, 035031 (2019)</u>; <u>F. Elahi, G. Elor, R. McGehee, PRD 105, 055024 (2022)</u>
- Viable baryogenesis with low reheat temperatures, $T_{\rm RH} \lesssim 100~{\rm MeV}$

• Signal depends on flavor structure; can also get e.g., $B^{\pm} \rightarrow p + \psi_D$ (inv)

B-MESOGENESIS

- Fully reconstruct hadronic decay of "tag" B meson, search for single SM baryon (Λ or p) + missing mass from signal B decay
- Use data to derive MC corrections due to missing decay modes

B-MESOGENESIS RESULTS

- No significant signal is seen: set 90% CL limits on signal branching fraction
- Shaded regions are branching fractions predicted from mesogenesis

SUMMARY

- *B* factories are among the best experiments to search for GeV-scale hidden sectors
- Many years after it stopped running, BABAR continues to put out new and world-leading hidden-sector results
- Presented three recent searches: axionlike particles, DM bound states, and non-thermal models of baryogenesis + DM
- There are still models that are largely untested, and new searches at BABAR and Belle II can significantly improve sensitivity

BACKUP SLIDES

ALP SELECTIONS

• Preselection: Reconstruct B^{\pm} candidates from K^{\pm} candidate and two photons

• Require
$$m_{\rm ES} = \sqrt{\frac{(s/2 + \vec{p_i} \cdot \vec{p_B})^2}{E_i^2}} - p_B^2 > 5.0 \text{ GeV}$$

 $|\Delta E| = |\sqrt{s}/2 - E_B^{\rm CM}| < 0.3 \text{ GeV}$

- Perform kinematic fit requiring photon and kaon to originate from beamspot, constrain mass to $m_B\pm\,$ and energy to beam energy
- Train 2 Boosted Decision Trees: each is trained on MC for one of the two predominant backgrounds:

$$e^+e^- \rightarrow q\bar{q} \ (q=u,d,s,c)$$

 $e^+e^- \rightarrow B^+B^-$

ALP SELECTIONS

- 13 BDT training observables:
 - m_{ES}
 - ΔE
 - cosine of angle between sphericity axes of B^{\pm} candidate and rest of event (ROE)
 - PID info for kaon candidate
 - 2nd Legendre moment of ROE, calculated relative to B^{\pm} thrust axis
 - helicity angle of most energetic photon, and of kaon

- energy of most energetic photon in a candidate
- invariant mass of ROE
- multiplicity of neutral clusters
- invariant mass of diphoton pair, with 1 photon in B^{\pm} candidate and 1 photon in ROE, closest to each of π^0, η, η'

ALP SIGNAL EXTRACTION

- Perform unbinned maximum likelihood fits for signal peak over smooth background
- 476 mass hypotheses, step size between adjacent mass hypotheses is given by the signal resolution, σ
- σ is determined by fitting a double-sided Crystal Ball function to signal MC at various masses, interpolating for intermediate values
- Resolution ranges from 8 MeV at $m_a = 0.175 \text{ GeV}$ to 14 MeV at $m_a = 2 \text{ GeV}$, decreasing back to 2 MeV at $m_a = 4.78 \text{ GeV}$ as a result of the kinematic fit
- Signal MC resolution is validated by data/MC comparisons of $B^\pm \to K^\pm \pi^0$ and $B^\pm \to K^\pm \eta$, found to be consistent within 3%
- Signal efficiency derived from MC, ranges from 2% at $\,m_a = 4.78~{
 m GeV}$ to 33% at $\,m_a = 2~{
 m GeV}$

ALP FIT PROPERTIES

- Fits are performed over intervals of length $(30-70)\sigma$ depending on ALP mass, restricted to the range $0.11~{
 m GeV} < m_a < 4.8~{
 m GeV}$
- Likelihood function includes contributions from signal, continuum background, peaking background
- **Signal PDF:** modeled from signal MC and interpolated between simulated mass points
- Continuum background PDF: second-order polynomial for $m_a < 1.35$ GeV, first-order polynomial at higher masses
- Peaking background PDF: each SM diphoton resonance is modeled as a sum of a signal template and a broader Gaussian distribution with parameters fixed to fits in MC this component arises from continuum production of $\pi^0/\eta/\eta'$ that is broadened because of kinematic fit

ALP SYSTEMATICS

- Assess uncertainty on signal yield from fit by varying order of polynomial for continuum background (3rd-order for $m_a < 1.35$ GeV, constant at higher mass), varying shape of peaking background within uncertainties, and using next-nearest neighbor for interpolating signal shape
 - Dominates total uncertainty for some masses in vicinity of $\,\pi^0/\eta\,$
- Systematic uncertainty on signal yield from varying signal shape width within uncertainty is on average 3% of statistical uncertainty
- 6% systematic uncertainty on signal efficiency, derived from data/MC ratio in vicinity of η^\prime
- Other systematic effects negligible by comparison, including on limited signal MC statistics, luminosity

DARKONIUM RESULTS

- Consider windows around each mass in the $\Upsilon_D A'$ plane of width 8x signal resolution; estimate background from adjacent windows
- C_n sample corresponds to *n* pion pairs

BABAR, PRL 128, 021802 (2022), arXiv:2106.08529

DARKONIUM RESULTS

DARKONIUM: RESOLUTION

DARKONIUM: LONG-LIVED A'

DARKONIUM: LONG-LIVED A'

B-MESOGENESIS

• Select events with: $5.27~{
m GeV} < m_{ES} < 5.29~{
m GeV}$

 $1.110 \text{ GeV}/c^2 < m_\Lambda < 1.121 \text{ GeV}/c^2$

B-MESOGENESIS

- Select events with: $5.27~{
m GeV} < m_{ES} < 5.29~{
m GeV}$

 $|\Delta E| < 0.2 \text{ GeV}$

 $B^{\pm} \to p + \psi_D \text{ (inv)}$

 $B^{\pm} \to p + \psi_D \text{ (inv)}$

BABAR, PRD 107, 092001 (2023) & arXiv:2306.08490 (submitted to PRL)

B-MESOGENESIS

- Fully reconstruct hadronic decay of "tag" B meson, search for single SM baryon (Λ or p) + missing mass from signal B decay
- Train BDT using kinematic & purity observables that distinguish tagged B from continuum QCD events, as well as kinematic observables for signal B
- Derive data/MC rescaling factors using side bands

BABAR, preliminary

B-MESOGENESIS

B-MESOGENESIS RESULTS

- Scan over ψ_D mass hypotheses: signal region size is 3x signal resolution, background is estimated from adjacent intervals
- No significant signal is seen: set limits on signal branching fraction using profile likelihood method
- Shaded regions are branching fractions predicted from mesogenesis $B^0 \to \Lambda + \psi_D$ (inv) $B^{\pm} \to p + \psi_D \text{ (inv)}$ 10^{-4} Upper Limit of Br(B⁰→ψ_DΛ) Upper Limit of ${
 m Br}(B^+ o \psi_D + p)$ BABAR Belle 10^{-5} 10^{-5} BABAR 10^{-6} 10^{-6} $\mathscr{O}^{1}_{ud}(\psi_{D}b)(ud)$ BABAR, arXiv:2306.08490, $\mathcal{O}_{us}^1 = (\psi_D b)(us)$ $\mathscr{O}_{ud}^2(\psi_D d)(ub)$ **Belle Experiment** $\mathcal{O}_{ud}^3(\Psi_D u)(db)$ **BABAR** Experiment $\mathcal{O}_{us}^2 = (\psi_D s)(ub)$ submitted to PRL- 10^{-7} (this work) **BABAR** (90% C.L.) 398 fb^{-1} This Work $\mathcal{O}_{us}^3 = (\psi_D u)(sb)$ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 2.5 1.5 3.0 2.0 4.0 1.03.5 30 $m_{\Psi_D}(GeV/c^2)$ $m_{\psi_{\mathbf{D}}}$ [GeV/ c^2] BABAR, PRD 107, 092001 (2023)

• The same results can be re-interpreted to constrain R-parityviolating supersymmetry with low-mass neutralinos

<u>C. Dib et al, JHEP 02 224 (2023)</u>

