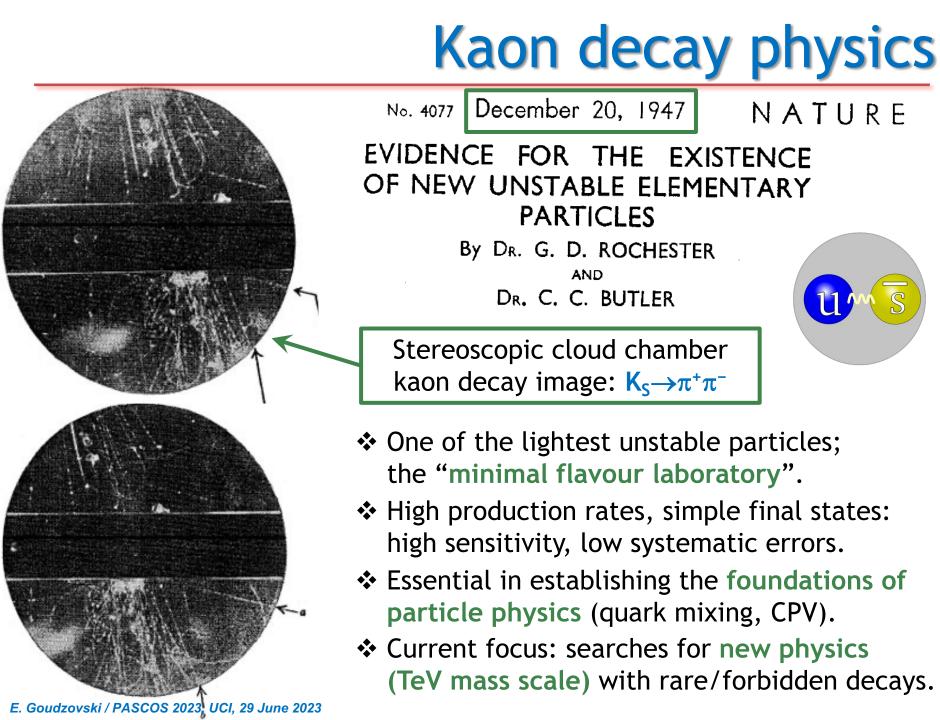
# Search for new physics in kaon decays at NA62

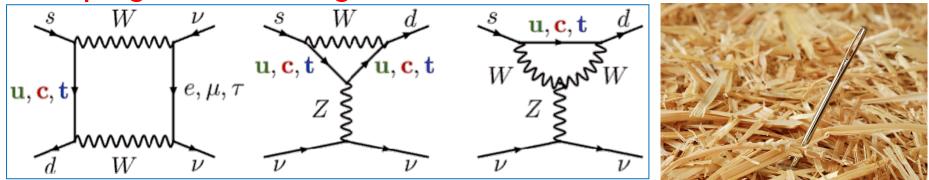
Evgueni Goudzovski

UNIVERSITY<sup>OF</sup> BIRMINGHAM


#### Outline:

- 1) Introduction: rare kaon decays
- 2) NA62 at CERN:  $K^+ \rightarrow \pi^+ \nu \nu$  and other measurements
- 3) HIKE at CERN: long-term plans for kaon experiments
- 4) Summary




#### PASCOS 2023 University of California, Irvine • 29 June 2023



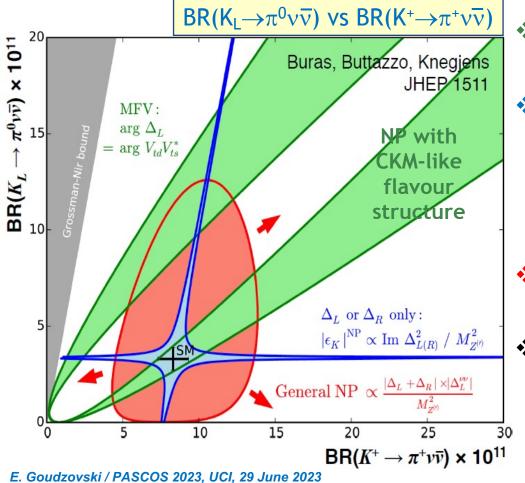


#### $K \rightarrow \pi \nu \nu$ in the Standard Model

#### SM: Z-penguin and box diagrams



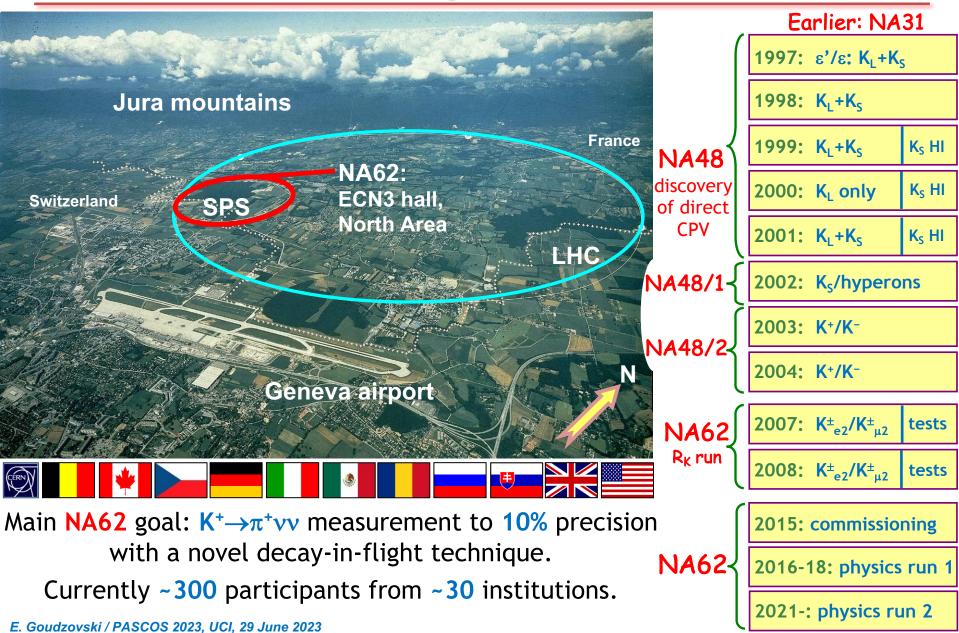
"Golden modes": extremely rare decays, precise SM predictions.


- ♦ Maximum CKM suppression:  $\sim (m_t/m_W)^2 |V_{ts}^*V_{td}|$ .
- ✤ No long-distance contributions from amplitudes with intermediate photons.
- Hadronic matrix element extracted from measured  $BR(K_{e3})$  via isospin rotation.
- European strategy update 2020: recognised as an essential activity.

| Mode                            | Standard Model BR             | Experimental status                       |
|---------------------------------|-------------------------------|-------------------------------------------|
| $K^+ \rightarrow \pi^+ \nu \nu$ | (8.60±0.42)×10 <sup>-11</sup> | (10.6±4.0)×10 <sup>-11</sup> (NA62 Run 1) |
| $K_L \rightarrow \pi^0 \nu \nu$ | (2.94±0.15)×10 <sup>-11</sup> | BR<300×10 <sup>-11</sup> at 90% CL        |
|                                 |                               | (KOTO 2015 data)                          |

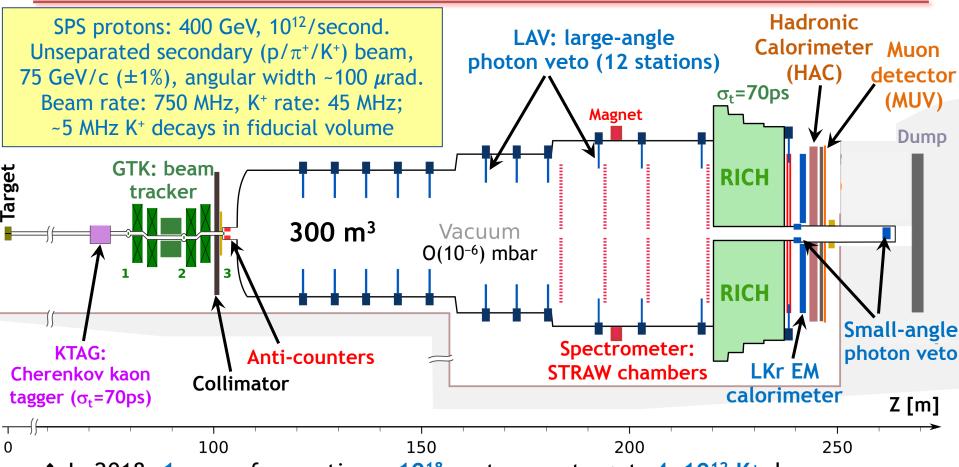
Standard Model BR: a recent  $|V_{cb}|$  and  $\gamma$ -independent determination. [Buras and Venturini, arXiv:2109.11032]

## $K \rightarrow \pi \nu \nu$ and new physics


- Correlations between BSM contributions to K<sup>+</sup> and K<sub>L</sub> BRs. [JHEP 11 (2015) 166]
- Need to measure both K<sup>+</sup> and K<sub>L</sub> to discriminate among BSM scenarios (within SM, this allows for a clean β angle measurement).
- Correlations with other observables ( $\epsilon'/\epsilon$ ,  $\Delta M_K$ , B decays). [JHEP 12 (2020) 97]

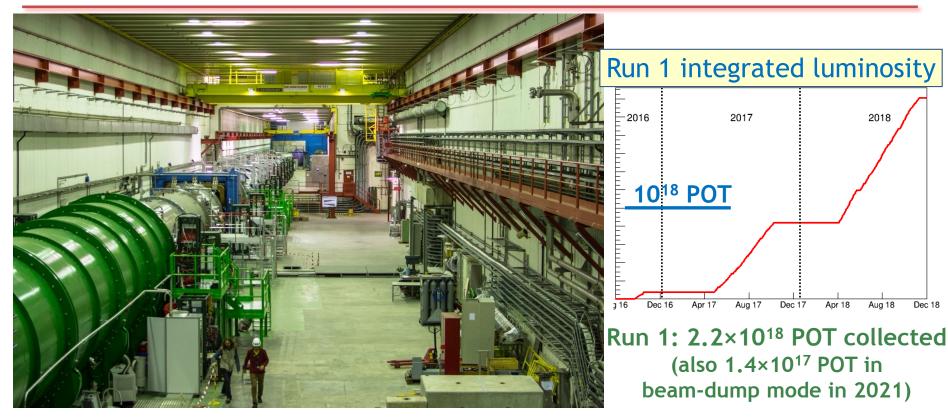


- ◆ Green: CKM-like flavour structure
  ✓ Models with MFV
- Blue: new flavour-violating interactions in which LH or RH couplings dominate
  - Z' models with pure LH/RH couplings
- Red: general NP models without the above constraints
- \* The Grossman-Nir bound: a model-independent relation BR $(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}) = \tau$


 $\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$ 

#### Kaon experiments at CERN



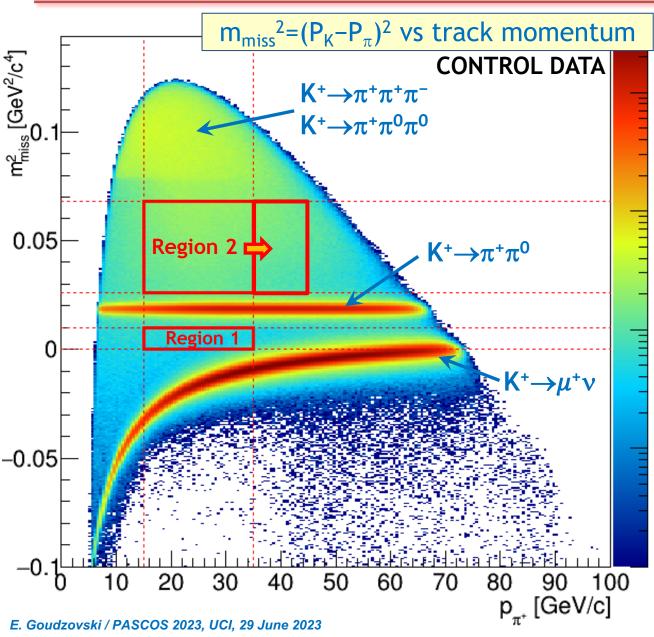

#### NA62 collaboration, JINST 12 (2017) P05025

## The NA62 experiment



- ♦ In 2018, 1 year of operation  $\approx 10^{18}$  protons on target;  $4 \times 10^{12}$  K<sup>+</sup> decays.
- ✤ Single event sensitivities for K<sup>+</sup> decays: approaching BR~10<sup>-12</sup>.
- ★ Kinematic rejection factors:  $1 \times 10^{-3}$  for  $K^+ \rightarrow \pi^+ \pi^0$ ,  $3 \times 10^{-4}$  for  $K \rightarrow \mu^+ \nu$ .
- ♦ Hermetic photon veto:  $\pi^0 \rightarrow \gamma\gamma$  decay suppression (for  $E_{\pi 0} > 40$  GeV) ~ 10<sup>-8</sup>.
- Particle ID (RICH+LKr+HAC+MUV): ~10<sup>-8</sup> muon suppression.

#### NA62 datasets




#### ✤ Run 1 (2016–18):

✓ Sample 2016 (30 days, ~1.3×10<sup>12</sup> ppp): 2×10<sup>11</sup> useful K<sup>+</sup> decays.

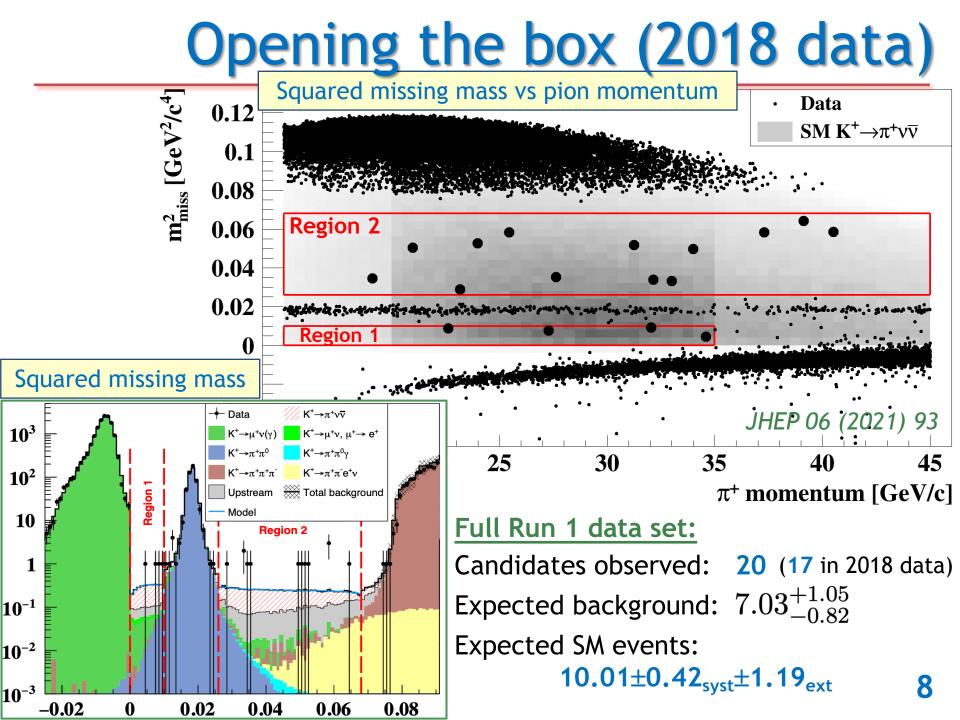
- ✓ Sample 2017 (160 days, ~1.9×10<sup>12</sup> ppp): 2×10<sup>12</sup> useful K<sup>+</sup> decays.
- ✓ Sample 2018 (217 days, ~2.3×10<sup>12</sup> ppp): 4×10<sup>12</sup> useful K<sup>+</sup> decays.
- ✤ Run 2 (2021–): on track (~3×10<sup>12</sup> ppp), approved till LS3.

## NA62: $K_{\pi\nu\nu}$ signal regions



Main K<sup>+</sup> decay modes (>90% of BR) rejected kinematically.

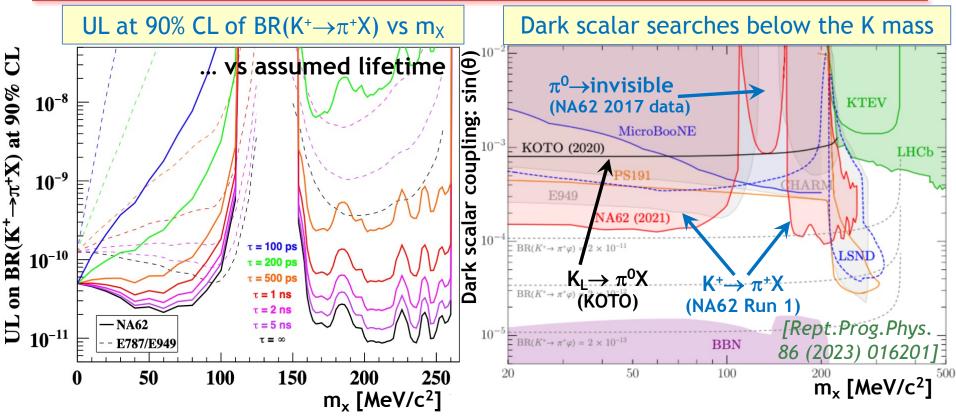
Resolution on  $m_{miss}^2$ :  $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$ .


Measured kinematic background suppression:

✓ K<sup>+</sup>→ $\pi^{+}\pi^{0}$ : 1×10<sup>-3</sup>; ✓ K<sup>+</sup>→ $\mu^{+}\nu$ : 3×10<sup>-4</sup>.

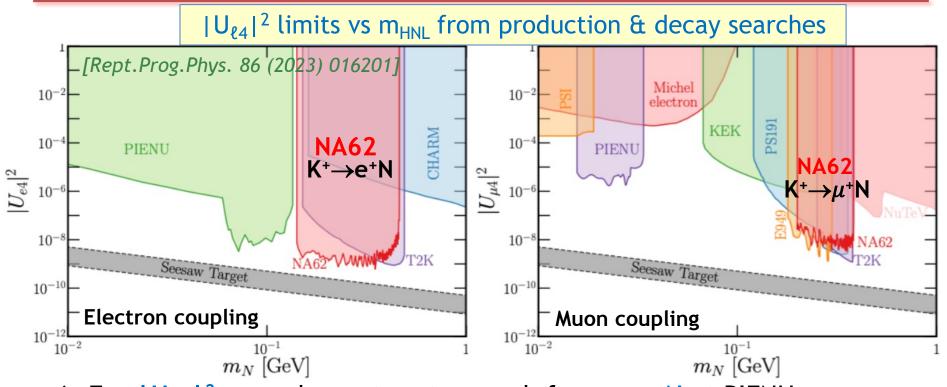

Further background suppression:

- PID (calorimeters & RICH): μ suppression 10<sup>-8</sup>, π efficiency = 64%.
- ✓ Hermetic photon veto:  $\pi^0 \rightarrow \gamma \gamma$  rejection factor = 1.4×10<sup>-8</sup>.


7



#### History of $K^+ \rightarrow \pi^+ \nu \nu$ searches




#### Search for $K^+ \rightarrow \pi^+ X$ (Run 1)



- ↔ Mass resolution improves with  $m_X$  and is  $\delta m_x \sim 40 \text{ MeV/c}^2$  at  $m_X=0$ .
- Upper limits of  $BR(K^+ \rightarrow \pi^+ X)$  established depending on X mass and lifetime.
- ✤ Improvement on BNL-E949 [PRD79 (2009) 092004] over most of m<sub>x</sub> range.
- Interpreted within the dark scalar and ALP (fermionic coupling) models [EPJ C81 (2021) 1015; Rept.Prog.Phys. 86 (2023) 016201]
- ✤ Note the KOTO result based on 2016–18 data. [PRL125 (2021) 021801]

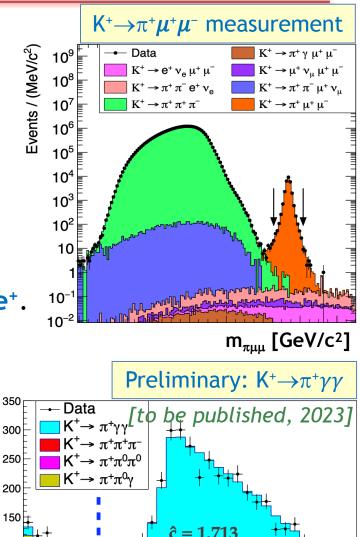
### Search for HNL production



- ↔ For  $|U_{e4}|^2$ , complementary to search for  $\pi^+ \rightarrow e^+ N$  at PIENU.
- ♦ For  $|U_{\mu4}|^2$ , complementary to search for  $K^+ \rightarrow \mu^+ N$  at BNL-E949.
- ✤ In both cases, complementary to HNL <u>decay</u> searches at T2K.
- Future kaon and pion experiments will approach the seesaw bound.
- An upper limit at 90% CL: BR(K<sup>+</sup>→ $\mu^+\nu\nu\nu$ )<1.0×10<sup>-6</sup>, and similar limits on BR(K<sup>+</sup>→ $\mu^+\nu$ X), with X=invisible.

[PLB 807 (2020) 135599; PLB 816 (2021) 136259] **11** 

### **Other NA62 results**


100

50

#### Broader NA62 physics programme:

- ♦ Precision measurements of rare K<sup>+</sup> decays with the world's largest samples:
  K<sup>+</sup>→π<sup>+</sup>μ<sup>+</sup>μ<sup>-</sup>, K<sup>+</sup>→π<sup>0</sup>e<sup>+</sup>νγ, K<sup>+</sup>→π<sup>+</sup>γγ.
  [JHEP 11 (2022) 11, arXiv:2304.12271]
- Searches for LFV/LNV in K<sup>+</sup> decays at the O(10<sup>-11</sup>) sensitivity: K<sup>+</sup>→π<sup>-</sup>e<sup>+</sup>e<sup>+</sup>, K<sup>+</sup>→π<sup>-</sup>π<sup>0</sup>e<sup>+</sup>e<sup>+</sup>, K<sup>+</sup>→π<sup>-</sup>μ<sup>+</sup>μ<sup>+</sup>, K<sup>+</sup>→π<sup>-</sup>μ<sup>+</sup>e<sup>+</sup>, K<sup>+</sup>→π<sup>+</sup>μ<sup>-</sup>e<sup>+</sup>, π<sup>0</sup>→μ<sup>-</sup>e<sup>+</sup>, K<sup>+</sup>→μ<sup>-</sup>ve<sup>+</sup>e<sup>+</sup>. [PLB 797 (2019) 134794, PRL 127 (2021) 131802, PLB 830 (2022) 137172, PLB 838 (2023) 137679]
- Searches for hidden-sector mediator production in K<sup>+</sup> decays. [JHEP 05 (2019) 182, PLB 807 (2020) 135599, PLB 816 (2021) 136259, JHEP 02 (2021) 201, JHEP 03 (2021) 058]
- ★ A dedicated beam-dump programme. First result:  $A' \rightarrow \mu^+ \mu^-$  [arXiv:2303.08666]

E. Goudzovski / PASCOS 2023, UCI, 29 June 2023

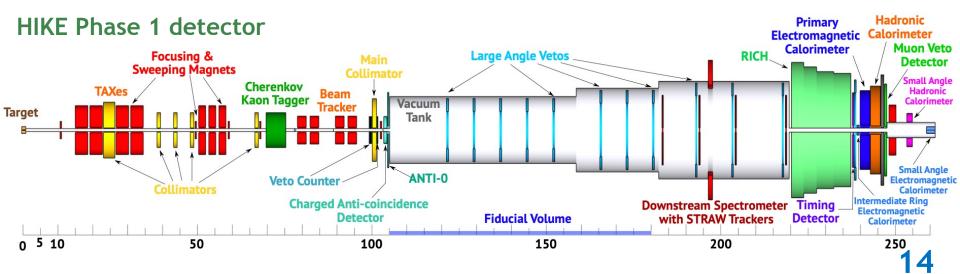


ChPT O(p<sup>6</sup>)

 $z=(m_{\gamma\gamma}/m_K)^2$ 

### NA62 Run 2: 2021-LS3

- ✤ Run 2: K<sup>+</sup>→ $\pi^+\nu\nu$  measurement at ~10% precision in a low-background, high-acceptance regime, with an established technique.
- Modifications of the setup for background reduction:
  - ✓ fourth kaon beam tracker (GTK) station;
  - ✓ rearrangement of beamline elements around the GTK achromat;
  - $\checkmark$  new veto counters upstream and downstream of the decay volume;
  - $\checkmark\,$  new kaon tagger with hydrogen radiator (CEDAR-H, since 2023).
- Improved TDAQ: beam intensity increased by ~30% wrt Run 1.




E. Goudzovski / PASCOS 2023, UCI, 29 June 2023



# The HIKE proposal

- SPS fixed target operation foreseen until at least 2038.
- HIKE ("High-Intensity Kaon experiments"): a long-term programme rare kaon decay programme at the SPS.
- \* Multiple phases:  $K^+$  and  $K_L$  decay experiments.
- Beam intensity: with up to ×6 the NA62 (~1.5×10<sup>19</sup> pot/year).
- ✤ A clear insight into the flavour structure of new physics.
- ✤ A few times 10<sup>19</sup> pot to be collected in beam dump mode.
- Snowmass paper: arXiv:2204.13394; Lol: arXiv:2211.16586.
- Proposal for Phases 1 and 2: to be submitted in 2023.





### HIKE Phase 1: $K^+ \rightarrow \pi^+ \nu \nu$

A multi-purpose K<sup>+</sup> experiment focused on K<sup>+</sup> $\rightarrow \pi^+\nu\nu$  at ~5% precision.

- ✓ Challenge: 20 ps time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- $\checkmark$  Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

#### New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm<sup>2</sup>; efficiency: >99% per plane (incl.fill factor); material budget : 0.3-0.5% X<sub>0</sub>; beam intensity: >3 GHz on 30×60 mm<sup>2</sup>; peak intensity: >8.0 MHz/mm<sup>2</sup>.

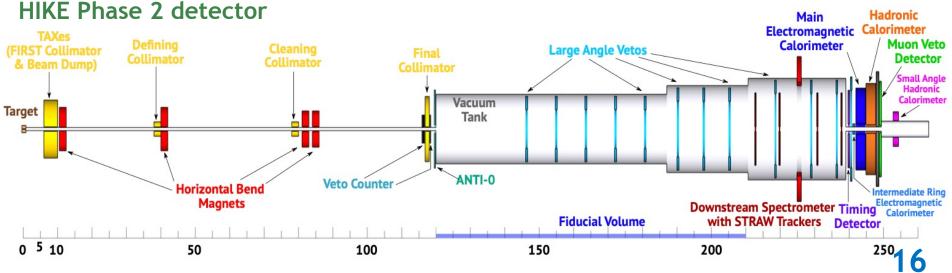


A current NA62 GTK station E. Goudzovski / PASCOS 2023, UCI, 29 June 2023

#### New STRAW spectrometer:

operation in vacuum; straw diameter/length: 5 mm/2.2 m; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); total material budget: 1.4% X<sub>0</sub>.




A current NA62 STRAW chamber

5



### HIKE Phase 2: $K_L \rightarrow \pi^0 \ell^+ \ell^-$

- ♦ A multi-purpose  $K_L$  experiment focused on  $K_L \rightarrow \pi^0 \ell^+ \ell^-$  at ~20% precision.
  - ✓ high-energy  $K_L$  beam (80 GeV/c mean momentum);
  - $\checkmark$  reconfigured Phase 1 detector; several subdetectors removed.
- Physics objectives:
  - ✓  $BR(K_L \rightarrow \pi^0 \ell^+ \ell^-)$ : measurements to a 20% accuracy. Challenge: reduction of the Greenlee background ( $K_L \rightarrow \gamma \gamma \ell^+ \ell^-$ ).
  - ✓ Search for LFV decays at  $10^{-12}$  level:  $K_L \rightarrow (\pi^0)(\pi^0)\mu e$ ,  $K_L \rightarrow 2\mu 2e$ .
  - ✓ Rare  $K_L$  decays: low-energy QCD tests;  $|V_{us}|$  measurements.
  - $\checkmark$  Searches for hidden-sector mediator production in  $K_L$  decays.



### Summary

- ✤ Rare kaon decays (K→πνν, ...): unique probes for heavy new physics at the O(100 TeV) mass scale, and for light hidden sectors.
- ✤ NA62 Run 1 result:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$$

- ♦ NA62 Run 2: aiming at O(10%) precision on BR(K<sup>+</sup> $\rightarrow \pi^+\nu\nu$ ) by 2025.
- ♦ Other NA62 Run 1 results: all aspects of K<sup>+</sup> decay physics.
- ✤ Precision measurements of both K<sup>+</sup> and K<sup>0</sup> decays are essential.
- HIKE at CERN: a proposal for next-generation rare K<sup>+</sup> and K<sub>L</sub> decay experiments with high-intensity beams.