Constraints on Long-Range Dark Matter-Standard Model Interactions From Dynamical Friction in Ultrafaint Dwarf Galaxies

Zach Bogorad

Based on work with Harikrishnan Ramani and Peter Graham

Outline

- Background:
 - Dark Matter and New Interactions
 - Ultrafaint Dwarf Galaxies
 - Dynamical Friction
- Dynamical Friction in Ultrafaint Dwarf Galaxies:
 - Stellar Evolution
 - Constraints on New Interactions

Background

Dark matter can interact with the Standard Model through weak, long-ranged forces

Existing constraints on long-range DM-SM interactions

Various bounds:

- Torsion balances
- MICROSCOPE
- Bullet cluster transparency
- Bullet cluster collision velocity
- Separation of stellar streams

hep-ph/0307284; Prog. Part. Nucl. Phys. **62** (2009) 102-134 gr-qc/2209.15487 astro-ph.CO/2207.10638 astro-ph/0606566; astro-ph/0608095; astro-ph.GA/0902.3452 astro-ph/0309303

Ultrafaint dwarfs are excellent laboratories for SM-DM interactions

From SIMBAD and DSS: http://simbad.ustrasbg.fr/simbad/simid?ldent=%403785419& Name=NAME%20Segue %201&submit=submit

Ultrafaint dwarfs are excellent laboratories for SM-DM interactions

UFDG Name	M _V (mag)	$L_{ m V}$ (L $_{\odot}$)	$r_{\rm h, \star}$ (pc)	σ_{\star} (km s ⁻¹)
Draco II	$-0.8^{+0.4}_{-1.0}$	$1.8^{+1.2}_{-0.7} \times 10^2$	$19.0^{+4.5}_{-2.6}$	$<5.9 (95 \text{ per cent CL})^a$
Segue I	-1.30 ± 0.73	$2.8^{+2.7}_{-1.4} imes 10^2$	24.2 ± 2.8	$3.7^{+1.4}_{-1.1}$
Tucana III	-1.3 ± 0.2	$2.8^{+0.6}_{-0.5} imes 10^2$	34 ± 8	$<1.2 (90 \text{ per cent CL})^a$
Triangulum II	-1.8 ± 0.5	$4.5^{+2.6}_{-1.7} imes 10^2$	17.4 ± 4.3	$<3.4 (90 \text{ per cent CL})^a$
Segue II	-1.86 ± 0.88	$4.7^{+6.9}_{-1.6} imes 10^2$	38.3 ± 2.8	$<2.6 (95 \text{ per cent CL})^a$
Carina III	-2.4 ± 0.2	$7.8^{+1.6}_{-1.3} imes 10^2$	30 ± 9	$5.6^{+4.3}_{-2.1}$ a
Willman I	-2.53 ± 0.74	$8.8^{+8.6}_{-4.3} \times 10^2$	27.7 ± 2.4	4.0 ± 0.8
Boötes II	-2.94 ± 0.74	$1.3^{+1.3}_{-0.6} \times 10^3$	38.7 ± 5.1	10.5 ± 7.4
Grus I	-3.47 ± 0.59	$2.1^{+1.5}_{-0.9} \times 10^3$	28.3 ± 23.0	$2.9^{+6.9}_{-2.1}$
Horologium I	-3.55 ± 0.56	$2.2^{+1.5}_{-0.9} \times 10^3$	36.5 ± 7.1	$4.9^{+2.8}_{-0.9}$
Reticulum II	-3.88 ± 0.38	$3.0^{+1.3}_{-0.9} \times 10^3$	48.2 ± 1.7	3.3 ± 0.7
Tucana II	-39 ± 02	$3.1^{+0.6} \times 10^3$	120 ± 30	8 6 ^{+4.4}

Age $\gtrsim 10 \text{ Gyr}$ Density $\sim 1 M_{\odot}/\text{pc}^3$

https://web.archive.org/web/2021022 3225516id_/https://www.zora.uzh.ch/ id/eprint/191094/1/staa170.pdf

Dynamical Friction in Ultrafaint Dwarf Galaxies

Stellar evolution due to dynamical friction

Stellar evolution due to dynamical frictionfrom a new forceSegue I - $\alpha_{SD} = 10^3$ R (pc)

Forces with range less than O(1 mpc) don't affect stellar evolution significantly

 $q_{\rm transfer} \lesssim m_{DM} v_{\rm rel}$

 $\pi \lambda^2 v_{
m rel} \tau_{
m galaxy} \rho_{DM} \gtrsim m_*$ for order-1 effects

Conservative assumptions about initial conditions then constrain new SM-DM forces

Note: work in progress; numbers may change slightly

Questions?

Backup Slides

Existing constraints on long-range DM-SM interactions

Existing constraints on long-range DM-SM interactions

 $\alpha_{SD} \le \sqrt{\alpha_{SS} \alpha_{DD}}$

Also includes a direct constraint on α_{SD} from looking for MW-center-directed EP violation

Prog. Part. Nucl. Phys. 62 (2009) 102-134

If dark matter has mixed charge signs, Debye screening limits the new force's range

Dynamical friction also leads to anomalous acceleration of planets and satellites

Differential acceleration between the Sun and a satellite could give similar limits to UFDs gr-qc/1508.06273

At very long ranges, the collision velocity of the Bullet Cluster gives a stronger constraint

