Dirac neutrinos in the cosmic microwave background

Julian Heeck

PASCOS 2023 @ UC Irvine

6/27/2023

Standard Model of Particle Physics

[wikipedia]

Neutrinos oscillate!

- Neutrino oscillations are evidence for neutrino masses and mixing!
- $\nu_{e,\mu,\tau}$ are not the mass eigenstates.
- Mass splittings are tiny:

Kajita & McDonald '15

- $|m_3^2 m_1^2| = 2 \times 10^{-3} \, eV^2 \,, \quad m_2^2 m_1^2 = 8 \times 10^{-5} \, eV^2 \,.$
- Absolute masses unknown but below 0.8 eV. [KATRIN '19]
- Experimental program continues to pin down parameters (phases, mass scale, ordering).

Implications for theory?

Neutrino mass = new particles

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$\begin{split} \mathsf{m}_{\nu} &= \mathsf{y}_{\nu} \langle \mathsf{H} \rangle \\ &= 1 \, \mathsf{eV} \left(\frac{\mathsf{y}_{\nu}}{\mathsf{10}^{-11}} \right) \end{split}$$

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

Neutrino mass = new particles

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$egin{aligned} \mathsf{m}_{
u} &= \mathsf{y}_{
u} \langle \mathsf{H}
angle \ &= 1 \, \mathsf{eV} \left(rac{\mathsf{y}_{
u}}{10^{-11}}
ight) \end{aligned}$$

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

• Majorana neutrinos:

$$-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{L}}^{\mathsf{c}} = \bar{\nu}.$$

- $U(1)_{L}$ broken.
- Add $m_M \overline{\nu}_R^c \nu_R$?

$$\begin{split} m_{\nu} &\simeq (y_{\nu} \langle H \rangle) \frac{1}{m_{M}} (y_{\nu} \langle H \rangle)^{\mathsf{T}} \\ &\sim 1 \, eV \left(\frac{10^{12} \text{GeV}}{m_{M}} \right) y_{\nu}^{2}. \end{split}$$

- $\nu_{\rm R}$ is heavy gauge singlet.
- Confirm via $0\nu\beta\beta$.

How to confirm Dirac neutrinos?

How to see Dirac neutrinos?

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$\begin{split} \mathsf{m}_{\nu} &= \mathsf{y}_{\nu} \langle \mathsf{H} \rangle \\ &= 1 \, \mathsf{eV} \left(\frac{\mathsf{y}_{\nu}}{\mathsf{10}^{-11}} \right) \end{split}$$

- Tiny Yukawa couplings. •
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

- $\nu_{\rm R}$ are ultra-light new particles.
 - Contribute to early-universe radiation density $N_{\rm eff} \propto \rho_{\rm radiation}/\rho_{\gamma}?$
 - Not via tiny Higgs couplings.
 [Shapiro+, '80; recent: Luo+, '21]
 - Maybe via Hawking radiation.
 [Hooper+, '19; Lunardini+, '19; Das+, '23]
 - $\nu_{\rm R}$ has additional interactions in many models $\rightarrow N_{\rm eff}!$ [Steigman+, '79; Olive+, '81; Barger+, '03]

Dirac neutrinos = extra radiation?

time

Number of effective neutrinos: N_{eff}

• $N_{eff}^{SM} \simeq 3.$

earlier time

Number of effective neutrinos: N_{eff}

- $N_{eff}^{SM} \simeq 3.$
- Improvement on ΔN_{eff} in CMB-S4.

[Abazajian+, 1907.04473]

- Will probe if 3 v_R were *ever* thermal!
- Strong constraint for any Dirac ν model.

[[]Heeck & Abazajian, PRD '19]

Dirac vs. Majorana via cosmology!

earlier time

Example 1:

B-L with Dirac neutrinos

Example 2: Dirac leptogenesis

[Dick, Lindner, Ratz, Wright, PRL '00]

- Non-thermalization of v_{R} might be key for matter/antimatter.
- Idea: new heavy particle X decays out of equilibrium into $v_{L,R}$.

- Loop-level CP asymmetry ϵ : $\Delta \nu = \nu_{L} - \bar{\nu}_{L} = -(\nu_{R} - \bar{\nu}_{R}) \neq 0$
- v_R are out of equilibrium, sphalerons convert Δv into baryon asymmetry

$$\mathsf{Y}_{\Delta \mathsf{B}} \simeq 10^{-3} \varepsilon \eta \stackrel{!}{\simeq} 10^{-10}.$$

Julian Heeck - PASCOS '23

[Heeck, Heisig, Thapa, 2304.09893]

Dirac leptogenesis models

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
a	(1, 1, -1)	0	-2	$ u_R e_R ar{X}, \ LL ar{X}$	0
b	(1, 2, 1/2)	0	0	$\bar{H}X, \ \bar{\nu}_R L X, \ \bar{L}e_R X, \ \bar{Q}_L d_R X, \ \bar{u}_R Q_L X, \ X^{\dagger} H^{\dagger} H H$	0
c	(3, 1, -1/3)	0	-2/3	$d_R u_R X^{\dagger}, \ u_R e_R X^{\dagger}, \ Q_L L X^{\dagger}, u_R d_R X, \ Q_L Q_L X$	0 or 1
d	$({f 3},{f 1},2/3)$	0	-2/3	$u_R u_R X^\dagger, \; d_R d_R X$	1
e	$({f 3},{f 2},1/6)$	0	4/3	$ar{Q}_L u_R X, \ ar{d}_R L X$	0
$\int f$	(1, 2, -1/2)	1/2	-1	$\bar{X}L, \ \bar{\nu}_R XH, \ \bar{X}e_R H$	0

[Heeck, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
 - Still not thermalized if m_x is large, X can freeze in/out.
- v_{R} number is broken, X has decays to v_{R} and SM.
 - Hierarchy of rates $X \rightarrow v_R$ and $X \rightarrow SM$ important.
 - $|\varepsilon| \leq \min(\mathsf{B}_{\mathsf{R}},\mathsf{B}_{\mathsf{L}}).$

Dirac leptogenesis models

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
a	(1, 1, -1)	0	-2	$ u_R e_R ar{X}, \ LL ar{X}$	0
b	(1, 2, 1/2)	0	0	$\bar{H}X, \ \bar{\nu}_R L X, \ \bar{L}e_R X, \ \bar{Q}_L d_R X, \ \bar{u}_R Q_L X, \ X^{\dagger} H^{\dagger} H H$	0
c	(3, 1, -1/3)	0	-2/3	$d_R \nu_R X^{\dagger}, \ u_R e_R X^{\dagger}, \ Q_L L X^{\dagger}, u_R d_R X, \ Q_L Q_L X$	0 or 1
d	$({f 3},{f 1},2/3)$	0	-2/3	$u_R u_R X^\dagger, \; d_R d_R X$	1
e	$({f 3},{f 2},1/6)$	0	4/3	$ar{Q}_L u_R X, \; ar{d}_R L X$	0
$\int f$	(1, 2, -1/2)	1/2	-1	$\bar{X}L, \ \bar{\nu}_R XH, \ \bar{X}e_R H$	0

[Heeck, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
 - Still not thermalized if m_x is large, X can freeze in/out.
- v_{R} number is broken, X has decays to v_{R} and SM.
 - Hierarchy of rates $X \rightarrow v_R$ and $X \rightarrow SM$ important.
 - $|\varepsilon| \leq \min(\mathsf{B}_{\mathsf{R}},\mathsf{B}_{\mathsf{L}}).$

Dirac leptogenesis

- Very efficient asymmetry generation!
- X decays into (high-energy) v_{R} : testable ΔN_{eff} !
- Even works if X are too heavy to be on-shell: Dirac leptogenesis *via scattering*. [Heeck, Heisig, Thapa, 2306.13707]
- More fun with Dirac leptogenesis:

Case
$$SU(3) \times SU(2) \times U(1)$$
spin $(B-L)(X)$ Relevant Lagrangian terms that induce X decay ΔB d $(\mathbf{3}, \mathbf{1}, 2/3)$ 0 $-2/3$ $u_R \nu_R X^{\dagger}, \ d_R d_R X$ 1

- Don't even need sphalerons, can generate

$$\Delta \mathsf{B} = (\nu_\mathsf{R} - \bar{\nu}_\mathsf{R}) \neq \mathsf{0}$$

directly! Predicts proton decay $p \rightarrow K^+ \bar{\nu}_R$!

Dirac leptogenesis is fascinating!

Summary

- Dirac vs. Majorana is an important question.
- Can confirm Majorana via $0\nu\beta\beta$, what about Dirac?
- Dirac neutrinos predict ultra-light $v_{R}!$
- Could lead to detectable ΔN_{eff} in models that aim to explain
 - Dirac nature,
 - small neutrino mass,
 - the baryon asymmetry via leptogenesis.
- Soon we will now if Dirac neutrinos were ever thermalized!

Dirac neutrinos might show up soon!

Backup

Masses in the Standard Model

- $SU(2)_L \times U(1)_Y$ gauge symmetry forbids mass terms.
- Masses via spontaneous symmetry breaking \rightarrow U(1)_{\rm EM}.
- Higgs-fermion couplings:

 $\mathcal{L}_{\rm SM} \supset \ y_f \, \overline{f}_L \, H \, f_R + h.c.$

$$\rightarrow \begin{array}{c} \mathsf{y}_{\mathsf{f}} \left\langle \mathsf{H} \right\rangle \overline{\mathsf{f}}_{\mathsf{L}} \, \mathsf{f}_{\mathsf{R}} + \mathsf{h.c.} \\ \mathbf{y}_{\mathsf{f}} = \mathsf{y}_{\mathsf{f}} \times 174 \, \mathsf{GeV} \end{array}$$

For neutrinos: no
$$\nu_{R}$$
 !

The 3 neutrinos $\nu_{e,\mu,\tau}$ in the SM are massless.

Broken L:

n

n

W

• Neutrinoless double- β decay: (A,Z) \rightarrow (A,Z+2) + 2 e⁻ in β stable isotopes.

p

 e^-

р

- Current limits ~ 10^{26} yr.
- $0\nu 2\beta \Leftrightarrow Majorana \nu$.

 $\overline{\nu}$

 W^{-}

Lightest neutrino mass in eV

[Review: Perez, Wise, **Heeck** et al, 2208.00010]

Julian Heeck - PASCOS '23