PASC05 2023

Exploring new physics signatures in an Alternative Left-Right Model

PASCOS 2023, UC Irvine 27th June, 2023

Based on: Phys.Rev.D 102, 075020 (2020), JHEP12(2022)032

Collaborators : M. Frank, C. Majumdar, P. Poulose and U. A. Yajnik

Plan of the talk

- Motivation to Alternative Left-Right Model (ALRM)
- Neutrinoless double beta decay signatures
- Leptogenesis in ALRM
- Dark matter in this model
- Summary and conclusion

Left-Right Symmetric Model (LRSM)

- Theoretical predictions of the Standard Model match experimental searches with great accuracy.
- There remain unresolved issues within the SM indicate the existence of the Beyond SM (BSM) frameworks.
- Left-Right Symmetric Model (LRSM) is one of the promising approaches as BSM scenario (Pati et al.'74, Mohapatra et al.'75 and others)..
- Gauge Group : $\mathcal{G}_{LR} \equiv SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.
- The light neutrino masses can be generated via type-I+II seesaw formula.

₩

A very high right-handed breaking scale (>10¹⁴ GeV).

Motivation to ALRM

- LRSM, while quite successful as a BSM scenario, unfortunately suffers from unavoidable flavor-changing neutral current (FCNC) constraints.
- Unavoidable FCNCs in fermion-neutral Higgs couplings in conventional LRSMs (Ecker et al.'83, Y. Zhang et al.' 2008).

$$\lambda_{ijk}^{H\bar{U}U} = \frac{(v_u(Z_S)_{1k} - v_d(Z_S)_{2k})}{v_u^2 - v_d^2} M_{u_i} \delta_{ij} + \frac{(-v_d(Z_S)_{1k} + v_u(Z_S)_{2k})}{v_u^2 - v_d^2} \sum_{\ell=1}^3 V_{i\ell}^L M_{d_\ell} V_{j\ell}^{R*}$$

- Possible remedy: High scale LR breaking ⇒ makes framework less interesting phenomenologically !!!
- Need some alternative approach: Low energy fermions belong to 27-representation of $E_6 \Rightarrow$ fermion structure should be rearranged as compared to conventional LRSM \Rightarrow Alternative Left-Right Model (ALRM) proposed by Ernest Ma (1987).
- Gauge group : $\mathcal{G}_{ALRM} \equiv SU(3)_C \otimes SU(2)_L \otimes SU(2)_{R'} \otimes U(1)_{B-L} \otimes U(1)_S$.
- ALRM can be embedded in complex rank 6 Lie group E_6 . It has two maximal subgroups :

$$SO(10) \otimes U(1)$$
 and $SU(3) \otimes SU(3) \otimes SU(3)$.

Particle Content:

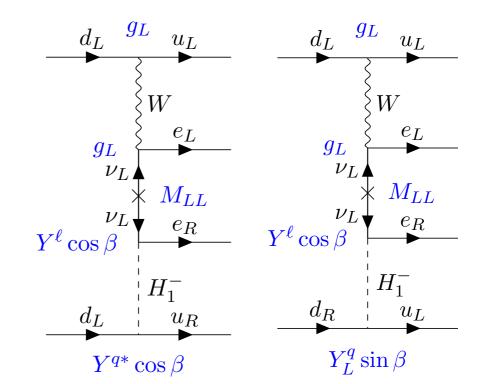
Quark sector :
$$Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
 : (3,2,1,1/6,0), $Q_R \equiv \begin{pmatrix} u_R \\ d_R' \end{pmatrix}$: (3,1,2,1/6, - 1/2),
$$d_L' : (3,1,1,-1/3,-1), \quad d_R : (3,1,1,-1/3,0).$$
 Lepton sector : $\ell_L \equiv \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$: (1,2,1,-1/2,0), $\quad \ell_R \equiv \begin{pmatrix} n_R \\ e_R \end{pmatrix}$: (1,1,2,-1/2,1/2),
$$n_L : (1,1,1,0,1), \quad N_R : (1,1,1,0,0).$$

Scalar sector : Φ : (1,2,2,0, - 1/2), χ_L : (1,2,1,1/2,0), χ_R : (1,1,2,1/2,1/2).

- This model permits an accessible right-handed breaking scale around a few TeV.
- Without invoking supersymmetry, model can provide two scenarios of DMs with generalised lepton number defined either by $L = S T_{3R'}$ (Dark LR model : DLRM) (S. Khalil *et al.*'2009) or by $L = S + T_{3R'}$ (Dark LR model 2 : DLRM2) (S. Khalil *et al.*'2010).

- Two step symmetry breaking :
- 1. The vev acquired by the neutral component of χ_R breaks the $SU(2)_{R'} \otimes U(1)_{B-L}$ symmetry down to $U(1)_Y$,
- 2. $SU(2)_L \otimes U(1)_Y$ is further broken to the electromagnetic gauge symmetry by the vevs of the bidoublet and left-handed doublet fields.

vevs:
$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 0 & v_2 \end{pmatrix}, \quad \langle \chi_{L,R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{L,R} \end{pmatrix}.$$


- $\langle \phi_1^0 \rangle = 0 \Rightarrow$ 1. It avoids unwanted mixing between d, d' and ν_L, n_R .
 - 2. It forbids mixing between W_L-W_R gauge bosons.
- Fermion masses : $\boxed{ m_u = \frac{Y^q v_2}{\sqrt{2}}, \quad m_d = \frac{Y^q_L v_L}{\sqrt{2}}, \quad m_\ell = \frac{Y^\ell v_2}{\sqrt{2}}, \quad m_\nu = \frac{1}{m_N} \left(\frac{Y^\ell_L v_L}{\sqrt{2}} \right)^2 }$

No liberty to take $v_L \rightarrow 0$.

$0\nu\beta\beta$ in ALRM

- W_R does not couple to usual N_R , d_R rather connects with exotics \Rightarrow No W_R mediation contribution present.
- Absence of $W_L W_R$ mixing \Rightarrow No mixed helicity η diagram.
- Heavier charged Higgs H_1^{\pm} relevant for $0\nu\beta\beta$ decay as it connects with quarks and leptons.
- H_2^{\pm} connects with exotics \Rightarrow not relevant here.

- Standard vector-vector mediation with $e_L e_L$ emission.
- Scalar-Scalar (H_1-H_1) mediation with e_R-e_R emission (Mohapatra'95, M. Doi *et al.*'85) .
- Scalar-Scalar (H_1-H_1) mediation with e_L-e_L emission .
- Vector-Scalar (W_L-H_1) mediation with e_L-e_L emission (Mohapatra'95, K. Babu & Mohapatra'95) .
- Vector-Scalar (W_L-H_1) mediation with e_L-e_R emission : Significant contributions in comparison to Standard one.

$$\frac{1}{T_{1/2}^{0\nu}} = G_{01} |\mathcal{M}_{\nu_L}^W \eta_{\nu_L}^W|^2 + G_{HH}^R |\mathcal{M}_{\nu_L}^H \eta_{\nu_L}^H|^2 + G_{HH}^L |\mathcal{M}_{\nu_R}^H \eta_{\nu_R}^H|^2 + G_{WH}^{LL} |\mathcal{M}_{\lambda}^{WH} \eta_{\lambda}^{WH}|^2 + G_{WH}^{LR} |\mathcal{M}_{\nu_L}^{WH} \eta_{\nu_L}^{WH}|^2$$

$$\left| \eta_{LL,\nu_L}^{\nu_i W_L W_L} \right| \sim 2 \times 10^{-8}$$

$$\left| \eta_{LL,\nu_L}^{\nu_i W_L H_1} \right| \sim 1.7 \times 10^{-8}$$

$$\left| \eta_{LR,\nu_L}^{\nu_i W_L H_1} \right| \sim 3.2 \times 10^{-12}$$

$$T_{1/2}^{0\nu}(^{136}\mathrm{Xe}) = 3.0 \times 10^{26} \left(\frac{200~\mathrm{MeV}}{\left|p\right|}\right)^2 \left(\frac{M_{H_1}}{200~\mathrm{GeV}}\right)^4~\mathrm{yrs}\,.$$

 $T_{1/2}^{0\nu}(^{76}\text{Ge}) = 3.6 \times 10^{26} \left(\frac{200 \text{ MeV}}{|p|}\right)^{2} \left(\frac{M_{H_1}}{200 \text{ GeV}}\right)^{4} \text{ yrs,}$

 \Rightarrow well within the sensitivity expected by future experiments.

MF, CM, PP, **SS**, UAY; PRD 102 (2020) 7, 075020

Resonant Leptogenesis

- Lepton number violation in this framework : $N_{iR} \rightarrow e_{iL}^-(H_1^+)$, $N_{iR} \rightarrow e_{iL}^+(H_1^-)$.
- Two lightest RHNs have almost degenerate masses ⇒ mass limits on RHNs can be significantly relaxed (A. Pilaftsis & T.E.Underwood'2004).
- Self-energy diagram will be the dominant one $\Rightarrow \epsilon_s \gg \epsilon_v$.

$$\epsilon_{s}^{i} = \frac{Im\left[\sum_{\alpha}\left(h_{\alpha i}^{*}h_{\alpha j}\right)\sum_{\beta}\left(h_{\beta i}^{*}h_{\beta j}\right)\right]}{\left(\sum_{\alpha}\left|h_{\alpha i}\right|^{2}\right)\left(\sum_{\beta}\left|h_{\beta j}\right|^{2}\right)} \frac{\left(m_{N_{i}}^{2}-m_{N_{j}}^{2}\right)m_{N_{i}}\Gamma_{N_{j}}}{\left(m_{N_{i}}^{2}-m_{N_{j}}^{2}\right)^{2}+m_{N_{i}}^{2}\Gamma_{N_{j}}^{2}} \cdot \text{with } \frac{h_{\alpha i}^{*}}{ai} = (Y_{L}^{\ell\alpha^{*}})\mathcal{V}_{\alpha i}^{NN^{*}}sin\beta \ .$$

• Condition to achieve required BAU in ALRM : $\Delta B \leq 10^{-4} \epsilon_s^i$ and we have

$$\frac{Im\left[\sum_{\alpha} \left(h_{\alpha i}^* h_{\alpha j}\right) \sum_{\beta} \left(h_{\beta i}^* h_{\beta j}\right)\right]}{\left(\sum_{\alpha} |h_{\alpha i}|^2\right) \left(\sum_{\beta} |h_{\beta j}|^2\right)} \simeq 10^{-7}$$

• Unlike LRSM, right handed neutrino masses are not related to W_R masses here $\Rightarrow W_R$ mediation does not contribute to wash-out efficiency.

• We assume two right-handed neutrinos N_1 and N_2 , which are quasi- degenerate, only contributing maximally to leptogenesis.

$$\text{Lepton Asymmetry}: \epsilon_s^{\nu N1} \simeq \frac{S_{13}^2 C_{23} \left(S_{12}^2 S_{13} + C_{12}^2 S_{23}\right) \left[C_{23} \left(S_{12}^2 S_{13} - C_{12}^2 S_{23}\right) + S_{12} C_{12} \left(S_{23} - C_{23}^2 S_{12}\right)\right]}{\left(S_{12} S_{13} - C_{12} C_{23} S_{13}\right)^2 \left(C_{12} S_{23} + S_{12} C_{23} S_{13}\right)^2} \sin \delta_N.$$

• Thus, leptogenesis imposes limits on the phases of the mixing matrix for right-handed neutrinos.

Different Cases:

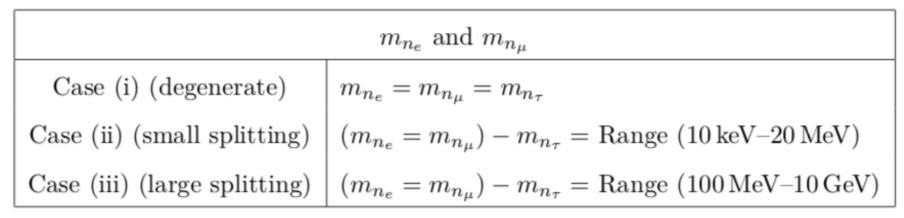
$$\text{(a) } C_{ij} \sim \mathcal{O}(1) \gg S_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin \delta_N \simeq 10^{-6} \ , \qquad \text{(b) } S_{ij} \sim \mathcal{O}(1) \gg C_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin \delta_N \simeq 10^{-6} \ ,$$

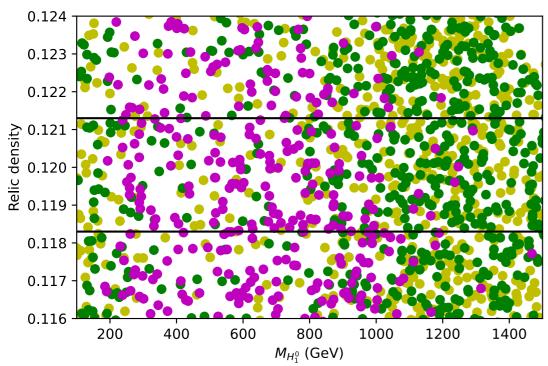
(c)
$$C_{ij}, S_{ij} \sim \mathcal{O}(0.1) \Rightarrow sin\delta_N \simeq 10^{-5}$$
, (d) $S_{13} \sim S_{23} \sim \mathcal{O}(0.01)$, $C_{12} \sim S_{12} \sim \frac{1}{\sqrt{2}} \Rightarrow sin\delta_N \simeq 6 \times 10^{-12}$.

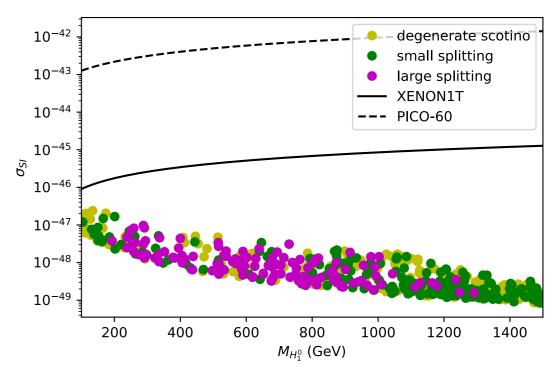
Minuscule Dirac CP phase in RHN sector can generate required leptogenesis to satisfy BAU constraint.

Dark Matter (DM) in ALRM

- The ALRM augmented by the extra $U(1)_S$ symmetry allows the introduction of the generalised lepton number $L=S+T_{3R'}$.
- Similarly, one can introduce a generalised R-parity, similar to the one existing in the supersymmetry, defined in a similar way as $(-1)^{3B+L+2S}$.
- The odd R-parity particles are as follows:

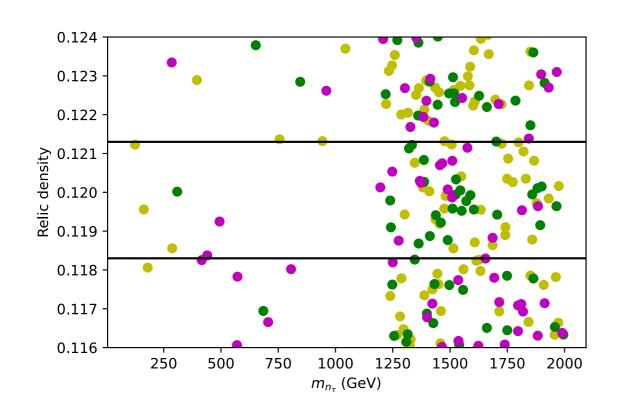

Scalar sector :
$$\chi_R^{\pm}, \phi_1^{\pm}, \Re(\phi_1^0), \Im(\phi_1^0)$$

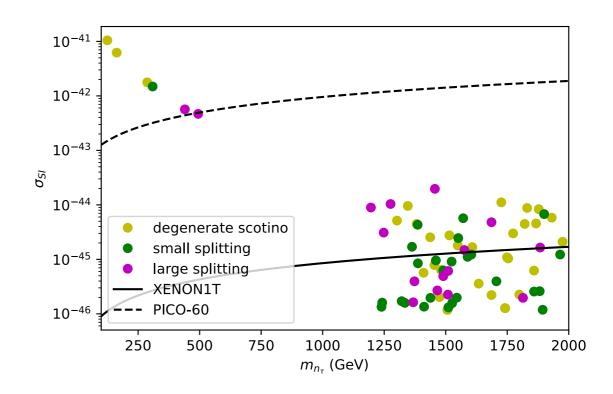

Fermion sector : the scotinos n_L , n_R , and the exotic quarks, d_L' , d_R'


Gauge sector : W_R

• The possible DM candidate is either the R-parity odd Higgs boson (scalar or pseudoscalar), or the scotino(s), or both .

Scalar Dark Matter





• In this case, the relic is sensitive to variations in $\tan \beta = v_2/v_L$.

MF, CM, PP, **SS**, UAY; JHEP12(2022)032

Fermion Dark Matter

MF, CM, PP, **SS**, UAY; JHEP12(2022)032

• The relic is sensitive to $v'=\sqrt{v_2^2+v_R^2}$, as $Y_{n_\tau}=m_{n_\tau}/v_R$, so we have varied both v' and m_{n_τ} .

Summary

- The ALRM is a BSM framework with similar gauge structure as the conventional LRSM, but free from the unavoidable FCNC constraints.
- This model can generate significant contributions to the $0\nu\beta\beta$ decay through vector-scalar (WH) mediation.
- Invoking the resonant leptogenesis, the required CP violation can be obtained, even for a small Dirac phase in the right-handed neutrino mixing matrix.
- The existence of a dark matter sector stabilised by R-parity is another attractive feature of this model, and an advantage over the usual LRSM.
- Depending on the mass hierarchy, the model allows either a scalar dark matter (neutral R-parity odd scalar and pseudoscalar) or a fermion (scotino) dark matter.

Thank you!

Comments, questions, Suggestions!!!