From SuperMAG to SNIPE Hunt:

Using the Earth to search for ultralight dark matter

Saarik Kalia

on behalf of the SNIPE Hunt Collaboration

June 26, 2023

- Shielded/cavity experiments search for ultralight EM-coupled DM:
 - Kinetically mixed dark photon
 - Axionlike particle
- Signal scales with size of apparatus
- DPDM constraints below 10⁻¹⁴ eV (sub-Hz) all astrophysical
- We use the Earth as our apparatus/transducer!
- Ultralight DM → oscillating magnetic field at Earth's surface

DM Radio/ADMX

Earth

Effective current

• In non-relativistic limit, effects of ultralight DM given by

$$\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J}_{\text{eff}}$$

Effective current

• In non-relativistic limit, effects of ultralight DM given by

$$\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J}_{\text{eff}}$$

- ullet For dark-photon dark matter, ${f J}_{
 m eff} = -arepsilon m_{A'}^2 {f A}'$
- For axionlike dark matter, $\mathbf{J}_{\mathrm{eff}}=ig_{a\gamma}m_{a}a\mathbf{B}_{0}$

Effective current

• In non-relativistic limit, effects of ultralight DM given by

$$abla imes \mathbf{B} - \partial_{\mathbf{z}} \mathbf{E} = \mathbf{J}_{\mathrm{eff}}$$

- For dark-photon dark matter, $\mathbf{J}_{\mathrm{eff}} = -\varepsilon m_{A'}^2 \mathbf{A}'$
- For axionlike dark matter, $\mathbf{J}_{\mathrm{eff}}=ig_{a\gamma}m_{a}a\mathbf{B}_{0}$
- When $\lambda_{\rm DM}\gg R$, electric field negligible o only magnetic field signal
- Robustness: for arbitrary boundary conditions

$$\mathbf{B} = \mathbf{B}_{\mathrm{sph}} + \mathrm{curl}\text{-free}$$

Can project out curl-free part

Search in SuperMAG dataset

- Signal is spatially coherent → 500+ ground-based magnetometers
- Signal is temporally coherent → 50 years of data
- 1-minute resolution

SuperMAG 1-minute limits

Going to higher frequencies

• $10^{-2} \, \mathrm{Hz} < f_{\mathrm{DM}} < 1 \, \mathrm{Hz}$: SuperMAG 1-second resolution dataset

Going to higher frequencies

• $10^{-2} \,\mathrm{Hz} < f_\mathrm{DM} < 1 \,\mathrm{Hz}$: SuperMAG 1-second resolution dataset

- $f_{\rm DM} > 1\,{\rm Hz}$: Search for Non-Interacting Particles Experimental (SNIPE) Hunt
 - Take our own data above 1 Hz
 - ∘ Most noise is man-made → go to radio quiet area, e.g. state park
 - SNIPE Hunt summer 2022 run: collected data at three locations (CA, PA, OH) over 2.5 days
 - Magnetometer noise limited

SNIPE Hunt 2022 limits

New technique

- Above 5 Hz, $\lambda_{\rm DM} \lesssim R \rightarrow$ no robustness, environmental effects relevant
- Ex: Signal diverges at Schumann resonances $m_{\rm DM}R = \sqrt{\ell(\ell+1)}$
 - Predicted: 11 Hz, 18 Hz, 26 Hz...
 - Measured: 8 Hz, 14 Hz, 20 Hz...
 - Measured widths as low as 2 Hz
 - Small deviations in location of resonance can lead to large discrepancies in signal size!

New technique

- Above 5 Hz, $\lambda_{\rm DM} \lesssim R \rightarrow$ no robustness, environmental effects relevant
- Ex: Signal diverges at Schumann resonances $m_{\rm DM}R = \sqrt{\ell(\ell+1)}$
 - Predicted: 11 Hz, 18 Hz, 26 Hz...
 - Measured: 8 Hz, 14 Hz, 20 Hz...
 - Measured widths as low as 2 Hz
 - Small deviations in location of resonance can lead to large discrepancies in signal size!
- ullet Because the ground is a conductor, we still have ${f E}_{\parallel}=0$, so

$$(
abla imes \mathbf{B})_{\parallel} = \mathbf{J}_{ ext{eff},\parallel}$$

- We can measure $\nabla \times \mathbf{B}$ instead!
- No physical currents in lower atmosphere

 background cancellation

Curl measurement scheme

Curl measurement scheme

Curl scheme projections

Dark photon

Axion

(Assuming we're magnetometer noise limited)

Conclusion

- Ultralight DM sources an oscillating magnetic field at Earth's surface
- ullet Scales with R, high spatial and temporal coherence
- Searched publicly available SuperMAG dataset to set limits for $f_{\rm DM} < 10^{-2}\,{\rm Hz}$
- SuperMAG 1-second analysis will constrain $10^{-2}\,\mathrm{Hz} < f_\mathrm{DM} < 1\,\mathrm{Hz}$
- SNIPE Hunt took data in summer 2022 to constrain $1\,\mathrm{Hz} < f_\mathrm{DM} < 5\,\mathrm{Hz}$
- Will implement curl scheme in summer 2023 for $f_{
 m DM} > 5\,{
 m Hz}$

SNIPE Hunt Collaboration

- Ariel Arza
- Itay M. Bloch
- Christopher Fabian
- Michael A. Fedderke
- Madison Forseth
- Brian Garthwaite
- Peter W. Graham
- Will Griffith
- Erik Helgren
- Katie Hermanson
- Andres Interiano-Alvarado

- Derek F. Jackson Kimball
- Saarik Kalia
- Brittany Karki
- Abaz Kryemadhi
- Andre Li
- Eduardo Castro Muñoz
- Ehsanullah Nikfar
- Jason E. Stalnaker
- Ibrahim A. Sulai
- Yicheng Wang

Backup Slides

Ampère's law argument

$$BR \sim \oint \mathbf{B} \cdot d\ell = \iint \mathbf{J}_{\text{eff}} \cdot d\mathbf{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

Full solutions

$$\mathbf{B}_{A'}(\Omega,t) = \sqrt{\frac{4\pi}{3}} \cdot \frac{m_{A'}R}{2 - (m_{A'}R)^2} \cdot \varepsilon m_{A'} \cdot \operatorname{Re}\left[\sum_{m=-1}^{1} A'_m \mathbf{\Phi}_{1m}(\Omega) e^{-2\pi i (f_{A'} - f_d m)t}\right]$$

$$\mathbf{B}_{a}(\Omega,t) = g_{a\gamma}a_{0} \cdot \operatorname{Im}\left[\sum_{\ell m} \frac{(\ell+1)C_{\ell m}m_{a}R}{\ell(\ell+1) - (m_{a}R)^{2}} \cdot \mathbf{\Phi}_{\ell m}(\Omega)e^{-2\pi i f_{a}t}\right]$$

IGRF model

$$\mathbf{B}_{\oplus} = -\nabla V_0$$

$$V_0 = \sum_{\ell=1}^{\infty} \sum_{m=0}^{\ell} \frac{R^{\ell+2}}{r^{\ell+1}} \left(g_{\ell m} \cos(m\phi) + h_{\ell m} \sin(m\phi) \right) P_{\ell}^m(\cos\theta)$$

$$C_{\ell m} = (-1)^m \sqrt{\frac{4\pi(2 - \delta_{m0})}{2\ell + 1}} \frac{g_{\ell m} - ih_{\ell m}}{2}$$

SNIPE Hunt 2022 PSDs

SNIPE Hunt 2022 activity

Geomagnetic storm

Vanishing electric field

