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An auspicious day to be talking about SGWBs

3-4 sigma evidence for nanohertz SGWB
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The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background
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Probing the early universe with gravitational waves

New physics? EWSB ? QCD CMB
Inflation Quark-gluon plasma Hadrons BBN Nuclei Atoms
10—3% 1030 10—25 10—20 1015 10—10 105 109 10° 1010 1015

Age of the universe (seconds)

Opaque to photons .

| Not opaque to gravitational waves! >

Gravitational waves are our only direct probe of the early universe — and whatever new physics
may lurk in its thermal history

[Adapted from D Croon]



GWs from phase transitions: theory + experiment

False vacuum decay

Bubble collisions

Potential V()

Field value ¢

Perturbative bounce
formalism: T,y <> a, 8

Hydrodynamic simulations ] 1
NR 1-10 sensi tivity bands

1 EEE Power law integrated
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GWs from phase transitions: theory + experiment

False vacuum decay

Potential V()

Field value ¢

Perturbative bounce
formalism: T,y <> a, 8



Theoretical outlook: work to do

Perturbative analysis fails for strong
couplings
[Helmholdt, Kubo, van der Woude: 1904.07891]
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Huge uncertainty even from perturbative models
[Croon, Oliver Gould, Schicho, Tenkanen, White: 2009.10080]




False vacuum decay in the direct method

Direct method: non-perturbative definition of FV decay from first principles
[Andreassen, Farhi, Frost, Schwartz: 1602.01102, 1604.06090]
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Re cove I'ing th e p e I‘tuI‘b ative ap p ro aCh Numerator: bounce solution

Expands locally around each classical saddle point
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Denominator: constant F'V

Higher orders: perturbative effective potential
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The functional renormalization group: QCD

Highly successful in QCD in last decade, e.g.
[Skokov, Friman, Redlich: 1008.4570]

Herbst, Pawlowski, Schaefer: 1302.1426]

Cyrol, Fister, Mitter, Pawlowski, Strodthoff: 1605.01856]
Fu, Pawlowski, Rennecke: 1909.02991]
Gao, Pawlowski: 2002.07500]
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BUT: exact effective actions are convex

Maxwell construction: convexity due to non-local field
configurations that interpolate between minima

Exact effective actions don’t describe tunneling
without modifications

[Weinberg and Wu, 1987]

—— Tree-level: V(¢)
—— One-loop: V¢ (o)
- —- Exact (FRG): U(¢)
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Back to the drawing board: quasi-stationary patches

Generalization of saddle-point approximation: regions of quasi-stationary field configurations which
dominate integral

/qu e_SM)] @BC [¢] = Z @BC [an] /Dﬁb €_S[¢]wk [qb, an] ~ Z @Bc[én]e_rk[én]

This defines a quasi-stationary effective action

“QSEA condition”
wy[p, ] = e~/ Rk(@=9)°
0’ =(p—¢)> Sk°1
T<iT Ry s.t. 0> + V" + R > k2

°F Dp e S1e) ] )
v = |2Im f¢F Doe o(r=(d) — je—(rk[¢b]—rk[¢F])
JrDpestel | o,
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Non-perturbative implementation: the FRG for fluctuations

To formulate the QSEA in the language of the FRG, we introduce a modified FRG in terms of fluctuation size

rather than momentum scale.

Regulator functional added to the action
freezes out large fluctuations ¢* 2 k=21
N 1 _
Rl = (1= 5 [02 4 v'6@)

xT

o (-5 [0+ v6w))

Scale-dependent effective action = QSEA at
ascale k

T4ld) = —WilJ, ) + / Jo — ASk[d]
Wi[J, ¢] = 1n/D¢ exp [—S[gb] +/J¢— ASk[9, &]}

Exact flow equation receives modifications
through the propagator

OkTk[p] = %/(akRk)Gk[Cb; —p, p)

Robust approximation schemes like the
derivative expansion and vertex expansion
that don't spoil the non-perturbativity still

can be used
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Non-perturbative implementation: the FRG for fluctuations

Local Potential Approximation Closed form solutions
7 i(p+q) 2
3 193 Z Gif] = =
I'lg] = / [5(%)2 + Uk(¢>] ko B (@) + UL (@) 1, [, V(@@
T T T 1672 (k24+U})2
1 - _ LA NO (12
Uy = v/(aszk)Gk:[QS; —p,p|] (const. @) Uy = kES($)O(K) 2
b
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Solving the flow equation

Flow equation is just a differential equation!

Can be straightforwardly solved in a few lines
Mathematica or with SciPy’s built-in differential
equation solvers

Evaluation time ~ seconds
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Results and comparison with perturbation theory

1.0

0.5

U(¢) x 103

—-0.5

Quasi-stationary effective potential

Weak coupling regime
QSEA+FRG: Up_qg(¢)
- =+ One-loop: Vg ()

..... Pure FRG: Ug_q(¢)
—— Tree-level: V(¢)

AQsea = 2.0
A?)ert. = A?QSEA - V”(¢)

0.0 0.5 1.0

¢

1.0

0.5

U(¢p) x 10*

—-0.5

Quasi-stationary effective potential

=

Strong coupling regime
QSEA+FRG: Up_qg(¢)
- = One-loop: Ve (¢)
""" Pure FRG: Ug—q(¢)
—— Tree-level: V(¢)

AQsea = 2.5
A?)ert. = A2QSEA - V”(¢)

0.0 0.5 1.0

¢

Disagrees qualitatively as you approach

larger couplings

15



Next steps

QSEA +
fFRG
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Introducing: the 2PI formalism

1Pl action

Cypild / Tods

W] = n / Déexp [—S[sb] + [ me]

2Pl action
F2PI[<E7 G] = _W[J, K] + / Jx(/gx + %/ Kacy(Ga:y + (Emﬁgy)
x T,y

WIJ,K] = ln/DqSeXp l—S[(b] +/Ja}¢$ -I—%/ ny¢w¢y]
X x,Y

In addition to usual one-point source, introduce
two-point source

The resulting action has external dependence on
propagator

At a given value, -K is directly analogous to the
regulator; the difference is that it is now selected by
the Legendre transform for the propagator
[1908.02214]

FZPI

15

10

-5 0 5
¢ [2107.12914]
17



The QSEA condition can be implemented in 2PI

1PI QSEA 2P1 QSEA
QSEA condition QSEA condition
> Choose Ry s.t. ¢* Sk721 - Choose G, s.t. () =G <k %1
= Inpractice: 2 + V" + Ry, > k? > Inpractice: Gy = min{Gypr, K21}
=> Regulator is positive semidefinite - Kiis negative semidefinite
Quasi-stationary effective action Quasi-stationary effective action
-=> =modified FRG action > T'ip1[d, k] = Topi[d, Gi] — %/KGk
General flow equation General flow equation

AN %/((‘%Rk)Gk[(E; —p, P] Ok Tapr(¢, Gk] = /K@ka
’ hl1p1[d] = —Qrﬁ"[(akKk)@( K)Gy]
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First steps: 2PI + LPA

The flow equations can be remarkably simplified
(including a change of variables) in the LPA

Looks just like usual LPA, but with mass dressing

/432 (Ul:://)2

2 1.2
Bl = b+ Ui + 3272 (k2 + U}')

Next steps: DE2, VE

More involved, but b.c. of general flow equation is
tractable (unlike 1PI)

2P| LPA flow equations
k5

Uy = ———
FR T 30m2E2

O(Ey)

o E2 . k2 (EI%,)Z
s 8r2E2(E} — k2 — U})

Usual (Non-QSEA) LPA
]{75

327r2E,%

Ei=k+U}

(9]<;Uk; —
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Results + comparison ***PRELIMINARY***
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Strong coupling: Small but non-zero disagreement with
1PI QSEA

Likely due to higher order contributions to regulator
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Outlook: a new program of research

New quasi-stationary effective action for false vacuum decay implemented in a modified FRG for fluctuations
that is robust to strong couplings and is versatile + easy to use

Today’s work with Djuna Croon, Pete Millington:
-> Extending the QSEA to the 2PI formalism

Works in progress with Djuna Croon
-> Significant update to [arxiv:2104.10687] coming soon
-> Extending to finite T, more general field content

Works in progress with Djuna Croon, Matt Schwartz
-> In-depth follow-up on new insights, the direct method

Works in progress with Djuna Croon, Rachel Houtz, Ansh Bhatnagar:
= Improving warm DM constraints on axions with the FRG

Future directions
-> Using the QSEA to make new sphaleron rate calculations
-> GWsignals from chiral phase transitions in QCD-like dark sectors
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The big point: decay rates for strong interactions

Significant differences with perturbation theory at

large coupling

Unlike perturbation theory, FRG + QSEA is robust to

strong couplings

108

Bounce action

—— QSEA+FRG

=== One-loop

~
o510
=5 05k

Cdo
< 0.0
0.

== —
-

-

~
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Decay rates: the Callan-Coleman formalism

Decay rate = imaginary part of FV energy

To evaluate, use direct method or potential deformation
along with saddle-point approximation

s
9 Im fhits s Doe 9]

~ Ae—(Sln]=S[6r))
iV [ De S 6

’)/:

Problems:

=> Saddle point method: fundamentally perturbative
=> When taken to all orders, must be zero!

=> Off by afactor of two

[Coleman, 1977]
[Callan and Coleman, 1977]

OF

[

\ \
Field configuration ¢ |
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Beyond perturbation theory: exact effective actions

What about powerful existing tools for non-perturbative physics like the functional renormalization group?

Flows from classical action — exact 1pl effective action

Regulator function Ry (p) added to the
action freezes out IR modes with p < k

aSi=3 [ Rud?
2 p

Scale-dependent effective action for the
theory at ascale k

Luld) = < Wil + [ 16— ASia
Wil =t [ D6 exp {—S[qﬁ] + [ 6= a8, [dﬂ

Exact flow equation flows the effective
action across different scales

1

OnTk[0] = %/(akRk)Gk [¢: —p,p) = 5/ Gl

p %Ff) + Ry

Robust approximation schemes like the
derivative expansion and vertex expansion
that don't spoil the non-perturbativity

[Good review: Dupuis et al., arxiv:2006.04853]
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The local potential approximation

Zero'th order of derivative expansion; flow equation
for effective potential

LPA
i) = [ |5(002 +0u00)

Uy = %/p(ak:Rk:)Gk[Q;; —p,p] (const. ¢)

Closed form solutions

- 6(p+q) 2

Grlg] = =
ko k2(¢) + Ui (9) VI ()R ()
1 —|— 1 + 167]_2(]'%2_'_[]//)2
kk* ()0 (k2 2
9, — (9)O(k)

3272 (k2 + UY') V()R ()
1 + ]. + 1671'2(;;324-[]]2/)2

k2 =k + V"
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BUT: exact effective actions are convex

Regulator zero (physical)

Fluctuations very constrained Fluctuations constrained at some field values, Fluctuations non-local
Potential basically classical becoming non-local at others Convex potential
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BUT: exact effective actions are convex

Fluctuations very constrained
Potential basically classical

Fluctuations constrained at some field values,
becoming non-local at others

Regulator zero (physical)
Fluctuations non-local
Convex potential
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Understanding the fFRG flow

Only “clamped” in unstable regions - and there only minimally (= massless theory)
No more tension between constraints and locality
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