Precise Estimate of Decay of Charged Fermion in Electroweak-Charged Dark Matter Model

Satoshi Shirai (Kavli IPMU)

Based on arXiv:2210.16035 and work in progress with Masahiro Ibe, Masataka Mishima, and Yuhei Nakayama

WIMP Dark Matter

Weakly Interacting Massive Particle

DM abundance

WIMP Detection

Minimal WIMP Model

Add one particle and parameter. UV-complete (renormalizable theory).

Gauge Portal dark matter

- DM charged weak interaction.
- Minimal choice of electroweak charge is triplet.
- Wino dark matter in SUSY model.

Wino

• Majorana fermion \widetilde{W}

• Hypercharge Y=0

• SU(2) Ltriplet

$$\begin{pmatrix} \widetilde{W}^+ \\ \widetilde{W}^0 \\ \widetilde{W}^- \end{pmatrix}$$

Wino Spectrum

$$c\tau(\widetilde{W}^{\pm} \to \widetilde{W}^0 \pi^{\pm}) \simeq 7 \ \mathrm{cm} \left(\frac{\Delta m}{165 \ \mathrm{MeV}}\right)^{-3}$$

Wino Spectrum

$$c\tau(\widetilde{W}^{\pm} \to \widetilde{W}^0 \pi^{\pm}) \simeq 7 \operatorname{cm} \left(\frac{\Delta m}{165 \text{ MeV}}\right)^{-3}$$

Direct LHC Signals

LHC Search

Direct LHC Signals

Survival Probability **ATLAS** detector 10^{0} Run 2 Detector TRT 56 cm $151 \mathrm{cm}$ 44 cm 10^{-1} $c\tau = 7 \text{ cm}$ SCT < 137 cm $c\tau = 5 \text{ cm}$ **3**0 cm ■ 12 cm Pixel< 9 cm 10^{-2} 15 10 0 5 20 $15 \mathrm{cm}$ Distance from Beam [cm] IBL | **3** cm Primary vertex

10% error of lifetime \rightarrow 50% error of signal.

Wino and SM fermion effective interaction

$$G_F(\bar{f}'_L\gamma^\mu f_L)(\bar{\psi}_\pm\gamma_\mu\psi_0)$$

$$\Gamma = \frac{2(G_F)^2 \Delta m^5}{15\pi^3}$$
$$\longrightarrow c\tau \simeq 1 \text{ m} \left(\frac{\Delta m}{160 \text{ MeV}}\right)^{-5}$$

Wino and SM fermion effective interaction

$$G_F(\bar{f}'_L\gamma^\mu f_L)(\bar{\psi}_\pm\gamma_\mu\psi_0)$$

$$\Gamma = \frac{2(G_F)^2 \Delta m^5}{15\pi^3}$$

$$\rightarrow c\tau \simeq 1 \ \mathrm{m} \left(\frac{\Delta m}{160 \ \mathrm{MeV}}\right)^{-5}$$

Due to small mass difference, QCD effect is strong.

Decay into pion

Quark current to pion

$$\bar{d}\gamma^{\mu}\gamma^{5}u \to F_{\pi}p_{\pi}^{\mu}$$

Coupling Wino and pion

$$2\sqrt{2}F_{\pi}G_F(\partial_{\mu}\pi^-)\times(\bar{\psi}_{\pm}\gamma^{\mu}\psi_0)$$

$$i\mathcal{M}_{\text{tree}} = 2\sqrt{2}F_{\pi}G_F\Delta m\,\bar{u}_{\pm}(q)u_0(p)$$

$$\Gamma = \frac{4}{\pi} F_{\pi}^2 (G_F)^2 \Delta m^3 \left(1 - \frac{m_{\pi}^2}{\Delta m^2} \right)^{1/2}$$

 $\rightarrow c\tau \simeq 5 \ \mathrm{cm} \left(\frac{\Delta m}{160 \ \mathrm{MeV}}\right)^{-3}$

QCD correction is very strong. Electroweak correction?

 $m_{\widetilde{W}} \gg m_W \gg \Lambda_{\rm QCD} \sim \Delta m$

EW correction includes multi-scale physics.

Large logarithm? e.g., $\frac{\alpha}{4\pi} \log\left(\frac{m_{\widetilde{W}}}{\Lambda_{\rm QCD}}\right)$?

Which energy scale parameter? $\alpha(m_{\widetilde{W}})? \alpha(m_W)? \alpha(\Lambda_{QCD})?$

EW next-to-leading order calculation.

Inclusion of QED

Coupling Wino and pion $2\sqrt{2}F_{\pi}G_{F}(\partial_{\mu}\pi^{-}) \times (\bar{\psi}_{\pm}\gamma^{\mu}\psi_{0})$ $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ Covariant derivative

 $2\sqrt{2}eF_{\pi}G_{F}$

Photon Loop Example

 $\mathcal{M}_{\rm tree} \simeq F_{\pi} G_F m_{\widetilde{W}} \Delta m$

c.f., $\Delta m \sim \frac{\alpha}{4\pi} m_Z$

Photon Loop Example

Loop is much larger than tree?

Break of shift-symmetry

Coupling Wino and pion

$$2\sqrt{2}F_{\pi}G_{F}(\partial_{\mu}\pi^{-}) \times (\bar{\psi}_{\pm}\gamma^{\mu}\psi_{0}) \qquad \qquad 2\sqrt{2}F_{\pi}G_{F}(D_{\mu}\pi^{-}) \times (\bar{\psi}_{\pm}\gamma^{\mu}\psi_{0})$$
$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

With QED included, pion shift symmetry is completely broken.

Suppression of Wino decay is no longer guaranteed.

 $m_{\widetilde{W}}F_{\pi}G_F(\pi^-)\times(\bar{\psi}_{\pm}\psi_0)$

To get observable effect

$$\mathcal{M}_{\text{loop}} \simeq F_{\pi} G_F m_{\widetilde{W}}^2 \times \frac{\alpha}{4\pi} \left(\frac{1}{\epsilon} - 2\log \frac{m_{\widetilde{W}}}{\mu} + \frac{4}{3} \right)$$

UV divergent

We need specify counter-terms relevant for Wino decay.

Matching with electroweak theory and chiral perturbation (ChPT)

Matching procedure

Strategy is similar to precision of pion decay calculation in SM.

[Descotes-Genon & Moussallam 2005]

Compute both Wino decay and pion decay with EW/QCD corrections.

$$\begin{array}{c} \text{Relating} \\ \Gamma_{\text{loop}}(\pi^+ \to \mu^+ \nu(\gamma)) & \longleftarrow & \Gamma_{\text{loop}}(\widetilde{W}^+ \to \widetilde{W}^0 \pi^+(\gamma)) \end{array}$$

Computing...

Final Result

$$\Gamma_{\widetilde{W}^{\pm}}^{\text{loop}} = \Gamma_{\widetilde{W}^{\pm}}^{\text{tree}} \left\{ 1 + \frac{\alpha}{4\pi} \left[c_{-2} \left(\frac{m_{\widetilde{W}}}{\Delta m} \right)^2 + c_{-1} \left(\frac{m_{\widetilde{W}}}{\Delta m} \right) + c_{\log} \log \left(\frac{m_{\widetilde{W}}}{\Delta m} \right) + c_0 + \cdots \right] \right\}$$

Final Result

No Wino mass enhancement effect is found!

Final Result

Main theory errors from unknown piece of three-loop mass difference $\Delta_{3-\text{loop}}m$

Impact on LHC Search

10 GeV shift

General Mass Difference

	Δm
Pure Wino DM	~160 MeV
Higgsino-like DM	~300 MeV – 2 GeV from gaugino mixing
5-plet DM	~160 MeV and ~500 MeV

For larger mass difference, lepton and multi-meson decay modes are dominant.

Tau Decay

Tau decay has similar structure.

Hadron data for tau decay is available for BSM particle decay.

Charged Higgsino Decay

With EW correction and latest tau decay data

Summary

- Precise estimation of EW charged fermion is crucial for LHC search.
- All the large enhancements from heavy DM are completely canceled.
 - Non-relativistic version of Appelquist-Carazzone's decoupling theorem.
- Minor effect on the LHC searches.
- Application for more generic case, charge and mass difference.