
Juan Carlos Vasquez, Amherst College

Resurgence and self-completion in renormalized 
Gauge Theories 


(Work made in collaboration with A. Maiezza. To appear soon) 

PASCOS 2023, University of California Irvine, June 2023



Outline
1. Motivation. Statement of the problem 

2. Borel-Laplace and Borel-Ecalle 
resummation 

3. Perturbation theory, renormalons and 
non-linear ODE from RGE 



Outline

4. Resurgence of the RGE 

5.  New fixed points and a self-complete QED 

6. Other phenomenological applications



Statement of the Problem
Feynman, 1950

 “Feynman” the rules

𝒜 ∝ ∑
n

anαn

The amplitude

+ renormalization 
theory

After renormalization: the amplitude is finite at every order in perturbation theory



Feynman, 1950

 “Feynman” the rules

𝒜 ∝
?

∑
n=0

anαn

The amplitude

+ renormalization 
theory

After renormalization: the amplitude is finite at every order in perturbation theory

TRUE AS LONG AS  in finiten

Statement of the Problem



Feynman, 1950

 “Feynman” the rules

Results obtained fromFeynman rules  
Mathematically not well defined!

𝒜 ∝ ∑
n

anαn

The amplitude

+ renormalization

What happens when n → ∞

Statement of the Problem



Feynman, 1950

’t Hooft, 1979

Parisi, 1978-1980 

 “Feynman” the rules

Results obtained fromFeynman rules  
Mathematically not well defined!

𝒜 ∝ ∑
n

anαn

The amplitude

an ∝ n!

+ renormalization

What happens when n → ∞

Statement of the Problem

UV renormalons in �
4

Consider the diagram after the renormalization procedure
(reabsorbing the infinite pieces in the counterterms)

(n� 1)bubbles

k + l

pp p + k

l

Figure: ’t Hooft’s skeleton diagram.

[’t Hooft ’79]

(Comment. There is in literature also who argues against their
existence [Suslov ’05]. Conversely, there are compelling evidence of
their existence in QCD (from lattice perturbation theory)
[Bauer-Bali-Pineda, ’12].)

λϕ(x)4

∝ n!λn+1

“renormalons”

Asymptotic series! 



Summation (or resummation)
1. Start from  
 

 


Its Borel transform is ( )





If  converges, the Borel sum of  is given by





( , standard Laplace)


1) If  has do not have poles in the positive real 
axis f is Borel sumable 


⇥

�+

��

C

R
0x

Figure 3: Avoiding the pole at t = �1

Thus f(x)+ � f(x)�1 / e
1/x is a nontrivial solution of the homogeneous equa-

tion (as the di↵erence of any two distinct solutions must be). So by carefully
analyzing the sum of the unique divergent series solution, we actually discover
the other solutions that we thought were missing. Indeed, it is apparent that
the general solution of the ODE for arbitrary x must have the form
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where �0 is a positively oriented loop that wraps once around the singular point
t = �1, and a 2 C is a constant.

This behaviour, in which the function defined by a divergent series jumps
along a ray, is an archetypal example of the Stokes phenomenon. It is the
key to resurgence theory: the crucial missing term e

�1/x has “resurged” from
amidst the fog of the divergent series to produce the discontinuity.

3 Borel summation

Let us briefly summarize the Borel summation procedure that we have employed;
we will be more precise about this process in the coming weeks. Starting from
a power series in the variable x, say
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which is a series in a new variable t. For x > 0, the Borel sum of f is given
by

f(x) =

Z 1
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f̂(t)e�t/x

dt.
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We have the following diagram

Convergent series �! Summation �! Analytic functions

�! �!

operations
“all”
under
C

losure

operations
“all”
under
C

losure

�! �!

Transseries �! E-B Summation �! Analyzable functions

This is the only known way to close functions under the listed operations.

16 Asymptotics and Borel summability

Transseries, as constructed by Écalle, are the closure of series under a num-
ber of operations, including

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Di↵erentiation and integration.
(iii) Composition and functional inversion.
However, operations (i), (ii) and (iii) are far from su�cient; for instance

di↵erential equations cannot be solved through (i)–(iii). Indeed, most ODEs
cannot be solved by quadratures, i.e., by finite combinations of integrals of
simple functions, but by limits of these operations. Limits though are not
easily accommodated in the construction. Instead we can allow for

(iv) Solution of fixed point problems of formally contractive mappings, see
§3.8.

Operation (iv) was introduced by abstracting from the way problems with
a small parameter4 are solved by successive approximations.

Theorem. Transseries are closed under (i)–(iv).
This will be formulated precisely and proved in §4 and §4.9; it means many

problems can be solved within transseries. It seems unlikely though that even
with the addition of (iv) do we obtain all that is needed to solve asymptotic
problems; more needs to be understood.

Analyzable functions, BE summation. To establish a one-to-one iso-
morphic correspondence between a class of transseries and functions, Écalle
also vastly generalized Borel summation.

Borel-Écalle (BE) summation, when it applies, extends usual summation,
it does not depend on how the transseries was obtained, while preserving all
basic relations and operations. The sum of a BE summable transseries is, by
definition, an analyzable function.

BE summable transseries are known to be closed under operations (i)–(iii)
but not yet (iv). BE summability has been shown to apply generic systems of
linear or nonlinear ODEs, PDEs (including the Schrödinger equation, Navier-
Stokes) etc., quantum field theory, KAM (Kolmogorov-Arnold-Moser) theory,
and so on. Some concrete theorems will be given later.

The representation by transseries is e↵ective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
terms of its transseries.

Determining the transseries of a function f is the “analysis” of f , and
transseriable functions are “analyzable,” while the opposite process, recon-
struction by BE summation of a function from its transseries is known as
“synthesis.”

4The small parameter could be the independent variable itself.
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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This behaviour, in which the function defined by a divergent series jumps
along a ray, is an archetypal example of the Stokes phenomenon. It is the
key to resurgence theory: the crucial missing term e

�1/x has “resurged” from
amidst the fog of the divergent series to produce the discontinuity.

3 Borel summation

Let us briefly summarize the Borel summation procedure that we have employed;
we will be more precise about this process in the coming weeks. Starting from
a power series in the variable x, say

f =
1X

k=0

akx
k+1

,

we formed its Borel transform

f̂ =
1X

k=0

akt
k

k!
,

which is a series in a new variable t. For x > 0, the Borel sum of f is given
by

f(x) =

Z 1

0
f̂(t)e�t/x

dt.

9

B(xn+1) = tn /n!

⇥

�+

��

C

R
0x

Figure 3: Avoiding the pole at t = �1

Thus f(x)+ � f(x)�1 / e
1/x is a nontrivial solution of the homogeneous equa-

tion (as the di↵erence of any two distinct solutions must be). So by carefully
analyzing the sum of the unique divergent series solution, we actually discover
the other solutions that we thought were missing. Indeed, it is apparent that
the general solution of the ODE for arbitrary x must have the form

f(x) =

Z

�x+
a

2⇡i�0

e
�t/x

1 + t
dt =

Z

�x

e
�t/x

1 + t
dt+ ae

1/x

where �0 is a positively oriented loop that wraps once around the singular point
t = �1, and a 2 C is a constant.

This behaviour, in which the function defined by a divergent series jumps
along a ray, is an archetypal example of the Stokes phenomenon. It is the
key to resurgence theory: the crucial missing term e

�1/x has “resurged” from
amidst the fog of the divergent series to produce the discontinuity.

3 Borel summation

Let us briefly summarize the Borel summation procedure that we have employed;
we will be more precise about this process in the coming weeks. Starting from
a power series in the variable x, say

f =
1X

k=0

akx
k+1

,

we formed its Borel transform

f̂ =
1X

k=0

akt
k

k!
,

which is a series in a new variable t. For x > 0, the Borel sum of f is given
by

f(x) =

Z 1

0
f̂(t)e�t/x

dt.

9

̂f f

sθ( f(x)) = L ∘ B( f(x)) = ∫
∞eiθ

0

̂f(t) e−t/xdt

θ = 0

̂f

ak ∝ k!
Introduction 17

We have the following diagram

Convergent series �! Summation �! Analytic functions

�! �!

operations
“all”
under
C

losure

operations
“all”
under
C

losure

�! �!

Transseries �! E-B Summation �! Analyzable functions

This is the only known way to close functions under the listed operations.

16 Asymptotics and Borel summability
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The representation by transseries is e↵ective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
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2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
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which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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Thus f(x)+ � f(x)�1 / e
1/x is a nontrivial solution of the homogeneous equa-

tion (as the di↵erence of any two distinct solutions must be). So by carefully
analyzing the sum of the unique divergent series solution, we actually discover
the other solutions that we thought were missing. Indeed, it is apparent that
the general solution of the ODE for arbitrary x must have the form
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where �0 is a positively oriented loop that wraps once around the singular point
t = �1, and a 2 C is a constant.

This behaviour, in which the function defined by a divergent series jumps
along a ray, is an archetypal example of the Stokes phenomenon. It is the
key to resurgence theory: the crucial missing term e

�1/x has “resurged” from
amidst the fog of the divergent series to produce the discontinuity.
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Let us briefly summarize the Borel summation procedure that we have employed;
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We have the following diagram

Convergent series �! Summation �! Analytic functions

�! �!

operations
“all”
under
C

losure

operations
“all”
under
C

losure

�! �!

Transseries �! E-B Summation �! Analyzable functions

This is the only known way to close functions under the listed operations.

16 Asymptotics and Borel summability

Transseries, as constructed by Écalle, are the closure of series under a num-
ber of operations, including

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Di↵erentiation and integration.
(iii) Composition and functional inversion.
However, operations (i), (ii) and (iii) are far from su�cient; for instance

di↵erential equations cannot be solved through (i)–(iii). Indeed, most ODEs
cannot be solved by quadratures, i.e., by finite combinations of integrals of
simple functions, but by limits of these operations. Limits though are not
easily accommodated in the construction. Instead we can allow for

(iv) Solution of fixed point problems of formally contractive mappings, see
§3.8.

Operation (iv) was introduced by abstracting from the way problems with
a small parameter4 are solved by successive approximations.

Theorem. Transseries are closed under (i)–(iv).
This will be formulated precisely and proved in §4 and §4.9; it means many

problems can be solved within transseries. It seems unlikely though that even
with the addition of (iv) do we obtain all that is needed to solve asymptotic
problems; more needs to be understood.

Analyzable functions, BE summation. To establish a one-to-one iso-
morphic correspondence between a class of transseries and functions, Écalle
also vastly generalized Borel summation.

Borel-Écalle (BE) summation, when it applies, extends usual summation,
it does not depend on how the transseries was obtained, while preserving all
basic relations and operations. The sum of a BE summable transseries is, by
definition, an analyzable function.

BE summable transseries are known to be closed under operations (i)–(iii)
but not yet (iv). BE summability has been shown to apply generic systems of
linear or nonlinear ODEs, PDEs (including the Schrödinger equation, Navier-
Stokes) etc., quantum field theory, KAM (Kolmogorov-Arnold-Moser) theory,
and so on. Some concrete theorems will be given later.

The representation by transseries is e↵ective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
terms of its transseries.

Determining the transseries of a function f is the “analysis” of f , and
transseriable functions are “analyzable,” while the opposite process, recon-
struction by BE summation of a function from its transseries is known as
“synthesis.”

4The small parameter could be the independent variable itself.
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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Thus f(x)+ � f(x)�1 / e
1/x is a nontrivial solution of the homogeneous equa-

tion (as the di↵erence of any two distinct solutions must be). So by carefully
analyzing the sum of the unique divergent series solution, we actually discover
the other solutions that we thought were missing. Indeed, it is apparent that
the general solution of the ODE for arbitrary x must have the form
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where �0 is a positively oriented loop that wraps once around the singular point
t = �1, and a 2 C is a constant.

This behaviour, in which the function defined by a divergent series jumps
along a ray, is an archetypal example of the Stokes phenomenon. It is the
key to resurgence theory: the crucial missing term e

�1/x has “resurged” from
amidst the fog of the divergent series to produce the discontinuity.
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We have the following diagram

Convergent series �! Summation �! Analytic functions

�! �!

operations
“all”
under
C

losure

operations
“all”
under
C

losure

�! �!

Transseries �! E-B Summation �! Analyzable functions

This is the only known way to close functions under the listed operations.

16 Asymptotics and Borel summability

Transseries, as constructed by Écalle, are the closure of series under a num-
ber of operations, including

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Di↵erentiation and integration.
(iii) Composition and functional inversion.
However, operations (i), (ii) and (iii) are far from su�cient; for instance

di↵erential equations cannot be solved through (i)–(iii). Indeed, most ODEs
cannot be solved by quadratures, i.e., by finite combinations of integrals of
simple functions, but by limits of these operations. Limits though are not
easily accommodated in the construction. Instead we can allow for

(iv) Solution of fixed point problems of formally contractive mappings, see
§3.8.

Operation (iv) was introduced by abstracting from the way problems with
a small parameter4 are solved by successive approximations.

Theorem. Transseries are closed under (i)–(iv).
This will be formulated precisely and proved in §4 and §4.9; it means many

problems can be solved within transseries. It seems unlikely though that even
with the addition of (iv) do we obtain all that is needed to solve asymptotic
problems; more needs to be understood.

Analyzable functions, BE summation. To establish a one-to-one iso-
morphic correspondence between a class of transseries and functions, Écalle
also vastly generalized Borel summation.

Borel-Écalle (BE) summation, when it applies, extends usual summation,
it does not depend on how the transseries was obtained, while preserving all
basic relations and operations. The sum of a BE summable transseries is, by
definition, an analyzable function.

BE summable transseries are known to be closed under operations (i)–(iii)
but not yet (iv). BE summability has been shown to apply generic systems of
linear or nonlinear ODEs, PDEs (including the Schrödinger equation, Navier-
Stokes) etc., quantum field theory, KAM (Kolmogorov-Arnold-Moser) theory,
and so on. Some concrete theorems will be given later.

The representation by transseries is e↵ective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
terms of its transseries.

Determining the transseries of a function f is the “analysis” of f , and
transseriable functions are “analyzable,” while the opposite process, recon-
struction by BE summation of a function from its transseries is known as
“synthesis.”

4The small parameter could be the independent variable itself.
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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Borel-Ecalle summation



The Renormalized Green Function

in perturbation theory

G(2)
μν = (Dμν

tree(q
2)Π(q2))−1 .

Consider the renormalized two-point Green function in perturbation theory

Π(L) = 1 −
∞

∑
k=1

γk(α)Lk .

And it satisfies

[−2∂L + β(α)∂α − 2γ(α)] Π(L) = 0 .

L = ln(μ2/μ2
0)



The Renormalized Green Function

On the other hand, using the above set of equations one can show 

lim
k→∞

γk

γk+1
=

2
αβ1

⟹ −
2

αβ1
< ln(μ2/μ2

0) <
2

αβ1

Absolute convergence for  whenΠ(L) = 1 −
∞

∑
k=1

γk(α)Lk

γk+1(α)Lk+1

γk(α)Lk
< 1 ⟹ −

γk

γk+1
< L <

γk

γk+1

β(α) = β1α2 + 𝒪(α3)L = ln(μ2/μ2
0)

Λ2 = μ2
0e

2
β1α

or

μ2 < Λ2 with

The description provided by





 makes sense as long as 




We did a new derivation that do not use the 

one-loop running but the 


absolute convergence of the series

Π(L) = 1 −
∞

∑
k=1

γk(α)Lk

μ2 < Λ2

Parisi, 1978-1980 



Going Beyond Perturbation Theory: 

Renormalons, non-linear ODE and Resurgence



Non-linear ODE

Π(L) = 1 + R(α) −
∞

∑
k=1

γk(α)Lk

G(2)
μν = (Dμν

tree(q
2)Π(q2))−1 . L = ln(μ2/μ2

0)

Can we extend the validity of the description? 

Minimal modification: add an unknown function R(α)

This way the previously derived equations changes and the previous conclusion does not hold!

How do the the new equations look like?

The first equations is now 

2(R(x) + 1)γ(x) = 2γ1(x) −
sβ1

2
x2β(x)R′￼(x)



Non-linear ODE
❖ Using the results of Refereces 

 
 
 
 

  

,  

 
 

 

dR(α)
dα

=
2q

β1α2
R(α) +

β1(a0q + a + s) − β2 q
β2

1

R(α)
α

+ a0 ( a
β1

− 1) + 𝒪(R(α)2)

γ(α) = γ1(α) + q R(α) +
1
2

(2sαR(α)) + 𝒪(R2 |αR)

γ1(α) = aα + 𝒪(α2)

γ0(α) := 1 + a0α + 𝒪(α2)

• A. Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78–91, [1902.05847].  

• J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [1910.14507].
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Non-linear in R(αs)
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Position of singularities in the Borel Transform
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  since Green functions

depend on  and


q = 1
Λ

Λ2 = μ2
0e

2
β1α



Non linear ODE

HOW DO WE FIND THE FUNCTIONS  FOR  ?


KEY CONCEPT OF “RESURGENCE” 

Rn(αs) n > 0

R(αS) =
∞

∑
k=0

CnRn(αs) e
n

β0αs

Large order


PT gives R0(αs)

The solution is given by
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].

References

[1] W. Heisenberg, W. Pauli, Z. Phys. 56 (1929) 1–61, http://dx.doi.org/10.1007/BF01340129, (in German).
[2] J.S. Schwinger, Phys. Rev. 73 (1948) 416–417, http://dx.doi.org/10.1103/PhysRev.73.416.
[3] J.S. Schwinger, Phys. Rev. 74 (1948) 1439, http://dx.doi.org/10.1103/PhysRev.74.1439, 36(1948).
[4] J.S. Schwinger, Phys. Rev. 75 (1948) 651, http://dx.doi.org/10.1103/PhysRev.75.651, 59(1948).
[5] J.S. Schwinger, Phys. Rev. 76 (1949) 790–817, http://dx.doi.org/10.1103/PhysRev.76.790, 88(1949).
[6] R.P. Feynman, Rev. Modern Phys. 20 (1948) 367–387, http://dx.doi.org/10.1103/RevModPhys.20.367.
[7] R.P. Feynman, Phys. Rev. 74 (1948) 1430–1438, http://dx.doi.org/10.1103/PhysRev.74.1430.
[8] S. Tomonaga, Progr. Theoret. Phys. 1 (1946) 27–42, http://dx.doi.org/10.1143/PTP.1.27.
[9] Z. Koba, T. Tati, S. i. Tomonaga, Progr. Theoret. Phys. 2 (3) (1947) 101–116, http://dx.doi.org/10.1143/ptp/2.3.101.

[10] S.-I. Tomonaga, J.R. Oppenheimer, Phys. Rev. 74 (1948) 224–225, http://dx.doi.org/10.1103/PhysRev.74.224.
[11] F.J. Dyson, Phys. Rev. 75 (1949) 486–502, http://dx.doi.org/10.1103/PhysRev.75.486.
[12] N.N. Bogolyubov, D.V. Shirkov, Intersci. Monogr. Phys. Astron. 3 (1959) 1–720.
[13] E.C.G. Stueckelberg, A. Petermann, Helv. Phys. Acta 24 (1951) 317–319.
[14] M. Gell-Mann, F.E. Low, Phys. Rev. 95 (1954) 1300–1312, http://dx.doi.org/10.1103/PhysRev.95.1300.
[15] F.J. Dyson, Phys. Rev. 85 (1952) 631–632, http://dx.doi.org/10.1103/PhysRev.85.631.
[16] L.N. Lipatov, Proceedings, XVIII International Conference on High-Energy Physics Volume 1: July (1976) 15-21 Tbilisi,

USSR, 1976, pp. A5.26–28.
[17] G. ’t Hooft, Subnucl. Ser. 15 (1979) 943.
[18] A. Maiezza, J.C. Vasquez, Ann. Physics 394 (2018) 84–97, http://dx.doi.org/10.1016/j.aop.2018.04.027, arXiv:1802.

06022.
[19] P. Argyres, M. Unsal, Phys. Rev. Lett. 109 (2012) 121601, http://dx.doi.org/10.1103/PhysRevLett.109.121601, arXiv:

1204.1661.
[20] O. Costin, Int. Math. Res. Not. 1995 (8) (1995) 377, http://dx.doi.org/10.1155/s1073792895000286.
[21] O. Costin, Duke Math. J. 93 (2) (1998) 289–344, http://dx.doi.org/10.1215/S0012-7094-98-09311-5.
[22] O. Costin, Monographs and Surveys in Pure and Applied Mathematics, Chapman and Hall/CRC, 2008.
[23] Y. Frishman, A.R. White, Nuclear Phys. B158 (1979) 221–233, http://dx.doi.org/10.1016/0550-3213(79)90197-4.
[24] K.G. Wilson, J.B. Kogut, Phys. Rep. 12 (1974) 75–200, http://dx.doi.org/10.1016/0370-1573(74)90023-4.
[25] G. Parisi, Phys. Lett. 76B (1978) 65–66, http://dx.doi.org/10.1016/0370-2693(78)90101-6.
[26] G. Parisi, Phys. Rep. 49 (1979) 215–219, http://dx.doi.org/10.1016/0370-1573(79)90111-X.
[27] C.G. Callan, Jr, Phys. Rev. D 2 (1970) 1541–1547, http://dx.doi.org/10.1103/PhysRevD.2.1541.
[28] K. Symanzik, Comm. Math. Phys. 18 (1970) 227–246, http://dx.doi.org/10.1007/BF01649434.
[29] M. Loewe, C. Valenzuela, Modern Phys. Lett. A 15 (2000) 1181–1190, http://dx.doi.org/10.1142/S0217732300001481,

arXiv:hep-th/9911151.
[30] M. Correa, M. Loewe, D. Valenzuela, R. Zamora, Magnetic renormalons in a scalar self interacting ��4 theory.

arXiv:190106426.
[31] W.Y. Crutchfield, I.I., Phys. Lett. 91B (1980) 425–427, http://dx.doi.org/10.1016/0370-2693(80)91012-6.
[32] N.N. Bogoliubow, O.S. Parasiuk, Acta Math. 97 (1957) 227–266, http://dx.doi.org/10.1007/BF02392399.
[33] K. Hepp, Comm. Math. Phys. 2 (1966) 301–326, http://dx.doi.org/10.1007/BF01773358.
[34] K.G. Wilson, Phys. Rev. D 3 (1971) 1818, http://dx.doi.org/10.1103/PhysRevD.3.1818.
[35] H. Mera, T.G. Pedersen, B.K. Nikoli¢, Phys. Rev. D 97 (10) (2018) 105027, http://dx.doi.org/10.1103/PhysRevD.

97105027, arXiv:180206034.
[36] O. Antipin, A. Maiezza, J. Carlos Vasquez, Nuclear Phys. B. https://dx.doi.org/10.1016/j.nuclphysb.201902014, arXiv:

180705060, http://www.sciencedirect.com/science/article/pii/S0550321319300422.
[37] G. Altarelli, 5th Hellenic School and Workshops on Elementary Particle Physics (CORFU 1995) Corfu, Greece,

September (1995) 3–24, 1995, pp. 221–236, 221(1996). http://preprints.cern.ch/cgi-bin/setlink?base=preprint&categ=
cern&id=th-95-309.

[38] I. Aniceto, G. Basar, R. Schiappa, A primer on resurgent transseries and their asymptotics. arXiv:1802.10441.



A New Mathematical Framework for QFTs: Resurgence

1.  Consider the transseries 





2. We are interested in the difference  




f(x) =
∞

∑
n=0

fn(x)e−nλ/x

(sθ− − sθ+)f(x) = ∑
n

(sθ− fn − sθ+ fn) ⋅ e−nλ/x

sθ− = sθ+ ∘ Gθ = sθ+ ∘ (1 + discθ)

Figure 3. The di↵erence between left and right resummation along the singular direction ✓ as a sum
over Hankel contours.

terms of the form e
�z. These terms are of course exponentially suppressed for z ⇠ 1 but

across a Stokes line, precisely the terms that we have forgotten, become relevant and have to

be taken into account.

It is easy to see, by a simply contour deformation, that the di↵erence between the ✓
+

and ✓
� deformation is nothing but a sum over Hankel’s contours, and the discontinuity of

S across ✓ is given as an infinite sum of contribution coming from each one of the singular

points, see Figure 3.

Definition 11. The logarithm of the Stokes automorphism defines the Alien derivative �! by

S✓ = exp

0

@
X

!2�✓

e
�! z�!

1

A , (4.11)

where we denoted with �✓ the set of singular points of the Borel transform along the ✓

direction.

Using the above definition we can rewrite equation (4.8) as

S✓+ �̃(z) = S✓� �̃(z) +
1X

k=1

X

{n1,...nk�1}

e
�(!n1+...+!nk ) z

k!
S✓�

⇣
�!n1

... �!nk
�̃(z)

⌘
. (4.12)

The Alien, etranger, derivative can be thought of as the logarithm of the Stokes auto-

morphism, but our definition (4.11) is still pretty mysterious and unintelligible.

Example 5. To understand better how this Alien derivative works we can start with the easier

task of understanding the Stokes automorphism when the Borel transform of our formal power

series �̃(z) 2 gRES
simp

takes the form

�̂(⇣) =
↵

2⇡i (⇣ � !)
+

1

2⇡i
�̂(⇣ � !) log(⇣ � !) , (4.13)

– 16 –

Borel( f )
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Resurgence and the Alien Derivative
The Stokes Automorphism  has the following structure





J. Écalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture

  is the Alien Derivative (it has all the properties of a derivative) 


The following property holds 


 ,  denotes standard derivative


J. Écalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture

Gθ

Gθ = 1 + δθ = elog Gθ := e
·Δθ,  where ·Δθ = log Gθ = log(1 + δθ) =

∞

∑
n=0

(−1)n

n
δn

θ .

·Δθ

[ ·Δθ, ∂x] = 0 ∂x = ∂/∂x



Bridge Equation
Consider again

Apply the derivative with respect to the one parameter transseries (  )  

Compare with 
 

 
then  

    Ecalle Brigde Equation.  Holomorphic constant  

dR(αs)
dαs

=
q

β0α2
s

R(αs) +
β0(a0q + a + s) − β1 q

β2
0

R(αs)
αs

+ a0 ( a
β0

− 1) + 𝒪(R(αs)2)

∂C ≡ ∂/∂C

d∂CR(αs)
dαs

=
q

β0α2
s

∂CR(αs) +
β0(a0q + a + s) − β1 q

β2
0

∂CR(αs)
αs

+ 𝒪(∂CR(αs)2)

d ·ΔθR(αs)
dαs

=
q

β0α2
s

·ΔθR(αs) +
β0(a0q + a + s) − β1 q

β2
0

·ΔθR(αs)
αs

+ 𝒪( ·ΔθR(αs)2)

·ΔθR(αs) = Aθ ∂CR(αs) Aθ

Both  and 


Satisfy the same ODE  

·ΔθR(αs) ∂CR(αs)

 not calculable for renormalons, fit using data!Aθ



Resurgence

    Ecalle Brigde Equation 

Plugging   above and equaling the powers of  in each side 

 
,  in particular    and so on …

 

·ΔθR(αs) = Aθ ∂CR(αs)

R(αS) =
∞

∑
k=0

CKRk(αs) e
k

β0αs Cn e
n

β0αs

·ΔθRn(αs) = (n + 1) Aθ e
1

β0αs Rn+1(αs)
·ΔθR0(αs) = Aθ e

1
β0αs R1(αs)

One can solve the recursion to find 
 

  which agree with the results of
Rn(x) =
enx

S n
0

δ0R0(x) −
n−1

∑
j=1

S j
0e−jxRj(x) , n ≥ 1 .
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Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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Self Complete QED
How do we connect the formalism of Alien Calculus with practical calculations in QCD? 

A new  Kind of fixed point

Which is associated with the non-linear ODE



 Self Complete QED
Using renormalon Feynman diagrams as an indicator of the analytic structure of


the Borel transform 

And in this case

R(αS) =
∞

∑
k=0

CKRk(αs) e
k

β0αs

β(α)

∑
n

(−1)n(z − n
2
β0

)−1



Applications
❖ Adler function 

 
 

ArXiv: 2104.03095 and  2111.06792



 Applications
❖ Hadronic Width of the Tau Lepton (Caprini, ArXiv: 2304.03504)

The total hadronic branching fraction to the electron branching fraction of the τ lepton is 
expressed

We first note that the contribution of the perturbative part in (26) to the integral (30) is equal to 0.2629, in perfect
agreement with the result given in Fig. 3 of [42].



Conclusions

❖ Independently of the instatons PT is divergent in some limit

❖ The latter is related with the Landau pole that we rephrase in a resurgent 
context 

❖ We show a resurgent non-perturbative completion can be achieved by adding 
the non-perturbative function   

❖  satisfy a specific non-linear ODE and must be identified with the Borel-
Ecalle resumation of Renormalons

R(α)

R(α)



Conclusions

❖ Resurgence provides a framework that at least allows one to extract from 
the experiments nonperturbative information from first principles.

❖ We have shed light on the connections between the theory of the 
generalized Borel resummation based on the no-linear, ordinary 
differential equations and the Alien Calculus.

❖ We have shown the existence of new kind of fixed points that can make 
QED well-defined in the UV

❖ There are recent applications to QCD phenomenology and many more 
applications in the future!



Thank you
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Dedicated to Martinus J.G. Veltman, 1931–2021, In Memoriam

Whenever our basic understanding of the fundamental laws of physics
improves, when more unified formalisms are uncovered, these advances are
branded by subtle reformulations of the so-called Big Questions. More
understanding comes with new questions, asked in a better way than be-
fore. When the renormalisation procedure for quantum field theories was
finally unravelled, theoreticians realised that these gave new views on how
the basic forces among elementary particles all could have a common, uni-
fied, origin. One elementary quantum field model stood out, which was
dubbed the ‘Standard Model’, and the question was asked to what extent
this model could describe all we know. Are there physical phenomena that
suggest further improvement? Such questions could be asked to experi-
menters, but also from a purely theoretical point of view, one could ask
what shortcomings the model has and what strategy should be followed to
find better pathways. This paper briefly reviews some Big Questions of the
past and asks how to use our deepest insights to rephrase the questions of
the present.

DOI:10.5506/APhysPolB.52.841

1. Introduction

With his strong personality, Martinus (Tini) Veltman has influenced
many of his students, colleagues, peers and friends. Being smart and di-
rect, his arguments were often quite to the point. If he found something to
be important, then so it was.

(841)
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One easily proves this by performing the contour integration in the complex
k0 plane. Equations (2.5) and (2.6) imply that, due to Lorentz invariance,
�F, �F ⇤, �+ and �� are all equal when x is outside the light cone.
Because of the on-shell properties of �±(k) integrations over �±(k) often
show no ultraviolet divergence, so that equations (2.5) and (2.6) are very
useful in renormalising a theory. Remember however that, in momentum
space, ✓(x0) behaves as a factor �i/(2⇡k0 � i"), which may still lead to
divergences.

3. The Standard Model

Renormalisation is a necessary ingredient whenever a theory describes
interaction as a perturbation expansion. In other branches of physics, per-
turbation theory is just a technical device for performing calculations where
the exact equations are too cumbersome. In particle physics, the situation
is not quite the same. When calculating weak interaction processes, it is not
clear whether ‘exact equations’ exist at all. The perturbation method was
discovered, and renormalisation is a part of this. In principle, one might have
thought that ‘exact equations’, whatever they are, will not require handling
infinite expressions, asking for extra constraints just to keep the infinities
under control.

It was originally thought that the strong interactions should not depend
on such procedures, since the perturbation expansion diverges right from the
beginning. But when ‘asymptotic freedom’ was discovered [12], it became
clear that the ultraviolet region of the strong interactions also depends on
perturbation expansions. The strong interactions were also found to be
described by a Yang–Mills system, but without a BEH mechanism. One
generally assumes that the ultraviolet domain of a theory determines the
course of the interactions in all other domains as well.

The question How do we sum the perturbation terms, or is there another

way to obtain the exact equations for all interactions? is correctly posed but
it seems to be not so urgent. We can arrange the diagrams in such a way that
diagrams calculated using perturbation theory determine with a satisfactory
accuracy how the elementary particles will interact under practically all
circumstances, as if we nearly have the ‘ultimate theory’ at our fingertips.

But this is not true for many reasons. First, the perturbation expansions
are still formally divergent, so that we still do not quite understand what
the equations are at the most fundamental level. Secondly, there is one
force that can only be taken into account at the most rudimentary level:
gravity. The gravitational force cannot be included in an optimal way; we
return to this shortly. The third reason for concern is that there appear to
be phenomena at a very large distance scale in the universe: dark matter
and dark energy. These require extensions of what we know: new particles
or new theories or both.

’t Hooft, 2021



The Renormalized Green Function

in perturbation theory

G(2)
μν = (Dμν

tree(q
2)Π(q2))−1 .

Consider the renormalized two-point Green function in perturbation theory

Π(L) = 1 −
∞

∑
k=1

γk(α)Lk .
And it satisfies

[−2∂L + β(α)∂α − 2γ(α)] Π(L) = 0 .

Expanding in powers of  one gets the sets of equationL

2γ(α)γk(α) + 2(k + 1)γk+1(α) = β(α)γ′￼k(α)

γ(α) = γ1(α)

L = ln(μ2/μ2
0)

. Klaczynski and D. Kreimer ArXiv: [1309.5061 



Non linear ODE
dR(α)

dα
=

2q
β1α2

R(α) +
β1(a0q + a + s) − β2 q

β2
1

R(α)
α

+ a0 ( a
β1

− 1) + 𝒪(R(α)2)

• The solution to the above non-linear equation is  
 

  (one parameter transseries) 


• The Borel transform of the solution is of the form  
 

 

 
from the bubble-diagrams expression then  and  is such that we get quadratic poles


• The above non-linear differential equation is precisely of the kind studied in  
 

R(αS) =
∞

∑
k=0

CnRn(αs) αkξ
s e

n
β0αs

B(R(g)) ∝ ∑
n

1

(z − n q
β0 )

1+ξ ≃ ∑
n

1

(z − n q
β0 )

2+𝒪(β1)

q = 1 s

90 A. Maiezza and J.C. Vasquez / Annals of Physics 407 (2019) 78–91

Borel transforming one gets a solution (in Borel space) as

B(y0) = 1
1 � z

, (A.8)

with a pole in z = 1. Applying directly the aforementioned four steps and defining S0 ⌘ i
S

2⇡ , one
gets the complete solution of (A.7)

y(x) 7! � (y(x)) = e
�1/xEi (1/x) � 4⇡2

C

S
e
�1/x , (A.9)

which is manifestly real, i.e. with no imaginary ambiguity. It is worth to comment that a simple
non-linear modification to the Euler’s equation leads to a Riccati’s equation, whose solution has
infinite singularities similarly to the case of renormalons (i.e. singularities on the positive axis for
some choice of the parameter), but with the difference that the poles are not simple [39].
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Π(L) = 1 + R(α) −
∞

∑
k=1

γk(α)Lk



The Renormalized Green Function

On the other hand, using the above set of equations one can show 

lim
k→∞

γk

γk+1
=

2
αβ1

⟹ −
2

αβ1
< ln(μ2/μ2

0) <
2

αβ1

Absolute convergence for  whenΠ(L) = 1 −
∞

∑
k=1

γk(α)Lk

γk+1(α)Lk+1

γk(α)Lk
< 1 ⟹ −

γk

γk+1
< L <

γk

γk+1

β(α) = β1α2 + 𝒪(α3)L = ln(μ2/μ2
0)

Λ2 = μ2
0e

2
β1α

or

μ2 < Λ2 with



Non-linear ODE

• A. Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78–91, [1902.05847].  

• J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [1910.14507].

❖ It can be shown that 
 

  

,  

 
 

 

dR(α)
dα

=
2q

β1α2
R(α) +

β1(a0q + a + s) − β2 q
β2

1

R(α)
α

+ a0 ( a
β1

− 1) + 𝒪(R(α)2)

γ(α) = γ1(α) + q R(α) +
1
2

(2sαR(α)) + 𝒪(R2 |αR)

γ1(α) = aα + 𝒪(α2)

γ0(α) := 1 + a0α + 𝒪(α2)



The Renormalized Green Function

beyond perturbation theory

G(2)
μν = (Dμν

tree(q
2)Π(q2))−1 .

Using the Wilson OPE, we know that at the non-perturbative level the green function is of 
the form

=
∞

∑
k=0

Ck (α(μ), ln
μ2

μ2
0 ) ×

1

(Λ2)k × ⟨𝒪k⟩

L = ln(μ2/μ2
0)

Π(L) = ∑
k=0

× [e− 1
(−β0)α(μ0) ]

k

fK(α)

In the OPE one has infinite number of Ck

Can resurgence help on this issue? YES!

Λ2 = μ2
0e

2
β1α



Bridge Equation
Consider again

Apply the derivative with respect to the one parameter transseries (  )  

Compare with 
 

 
then  

    Ecalle Brigde Equation.  Holomorphic constant  

dR(αs)
dαs

=
q

β0α2
s

R(αs) +
β0(a0q + a + s) − β1 q

β2
0

R(αs)
αs

+ a0 ( a
β0

− 1) + 𝒪(R(αs)2)

∂C ≡ ∂/∂C

d∂CR(αs)
dαs

=
q

β0α2
s

∂CR(αs) +
β0(a0q + a + s) − β1 q

β2
0

∂CR(αs)
αs

+ 𝒪(∂CR(αs)2)

d ·ΔθR(αs)
dαs

=
q

β0α2
s

·ΔθR(αs) +
β0(a0q + a + s) − β1 q

β2
0

·ΔθR(αs)
αs

+ 𝒪( ·ΔθR(αs)2)

·ΔθR(αs) = Aθ ∂CR(αs) Aθ

Both  and 


Satisfy the same ODE  

·ΔθR(αs) ∂CR(αs)

WE CAN FIT  FROM DATA 

DIFFICULT TO CALCULATE FOR INSTANTONS 


SEE DORIGONI (ARXIV:1411.3585), ANICETO ET. AL.  
(ARXIV:1802.10441) REVIEWS.


AND IMPOSIBLE FOR RENORMALONS

T’HOOFT (1979), ZINN-JUSTIN


 MAIEZZA, VASQUEZ (2016-PRESENT)  

Aθ



Medianization

One can solve the recursion





 to find 
 

  which agree with the results 

of


·ΔθRn(αs) = (n + 1) Aθ e
1

β0αs Rn+1(αs)

Rn(x) =
enx

S n
0

δ0R0(x) −
n−1

∑
j=1

S j
0e−jxRj(x) , n ≥ 1 .

Taking the Cauchy principal value prescription to deal with the Borel transform of the functions above 

does not automatically preserved the homorphism structure of the resummation procedure 



Medianization

To solve the issue above, medianization is introduced and it is given by 





Such that 





And since  ,  is a solution of  the ODE

Smed := S0− ∘ G1/2
0 = S0+ ∘ G−1/2

0 ,

Rmed(x) = SmedR(x) ,

[ ·Δθ, ∂x] = 0 Rmed(x)

dRmed(αs)
dαs

=
q

β0α2
s

Rmed(αs) +
β0(a0q + a + s) − β1 q

β2
0

Rmed(αs)
αs

+ a0 ( a
β0

− 1) + 𝒪(R(αs)2)


