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Outline

. Motivation. Statement of the problem

. Borel-Laplace and Borel-Ecalle
resummation

. Perturbation theory, renormalons and
non-linear ODE from RGE



Outline

4. Resurgence of the RGE
5. New fixed points and a self-complete QED

6. Other phenomenological applications



Statement of the Problem

Feynmﬁ, 1950 The amplitude

= e
.
“Feynman” the rules
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+ renormalization e -
theory

A Z a.
n

After renormalization: the amplitude is finite at every order in perturbation theory



Statement of the Problem

Feynmﬁ, 1950 The amplitude

= e
.
“Feynman” the rules
< >
+ renormalization e -
theory

?
A Z a0’
n=0
After renormalization: the amplitude is finite at every order in perturbation theory

TRUE AS LONG AS 7 in finite
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Statement of the Problem

Feynman, 1950
X | The amplitude

Results obtained fromFeynman rules ¢ &
Mathematically not well defined!

“Feynman” the rules
< >

+ renormalization

e
A Z a,o"
n

What happens whenn — oo
Asymptotic series! d, X n!

Parisi, 1978-1980

Ap(x)*

- n !
Figure: 't Hooft's skeleton diagram.

- < “renormalons” ['t Hooft '79]




Summation (or resummation)

1. Start from
O
_ k+1
f=>Y az*, q k!
k=0

lts Borel transform is (B(x**1) = rX/k!)

@)
~ aktk

k!’
k=0

IfjAr converges, the Borel sum of fis given by
coe?

so(f(x)) = L o B(f(x)) = F(o) e ™dt

(@ = 0, standard Laplace)

1) Iff has do not have poles in the positive real
axis f is Borel sumable

Convergent series | — | Summation | — | Analytic functions

C =~go O =~go
’U?LISQ 'UQLSQ
ESD \'CDC S \,(.Dg
ET- Hr—@ gj: '_g)-ﬂ
o = o &
=) )

n n

| l

Transseries | — | E-B Summation | — | Analyzable functions

This is the only known way to close functions under the listed operations.

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Differentiation and integration.

(iii) Composition and functional inversion.

0. Costin, Monographsvand Suf\/eys in Pure and Apf)liéd Mather-riatics, Chapman and Hall/CRC, 2008.



Borel Summation (or resummation)

1. Start from
O
_ k+1
f=>Y az*, q k!
k=0

lts Borel transform is (B(x"*!) = t"/n!)

@)
~ aktk

k!’
k=0

IfjAr converges, the Borel sum of fis given by
coe?

so(f(x)) = L o B(f(x)) = F(o) e ™dt

(@ = 0, standard Laplace)

1) Iff has do not have poles in the positive real
axis f is Borel sumable

This is the well-known Borel summation

l

Convergent series | — | Summation | — | Analytic functions

C =~go O =~go
’U?LISQ 'UQLSQ
ESD \'CDC S \,(.Dg
ET- Hr—@ gj: '_g)-ﬂ
o = o &
=) )

n n

| l

Transseries | — | E-B Summation | — | Analyzable functions

This is the only known way to close functions under the listed operations.

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Differentiation and integration.

(iii) Composition and functional inversion.

0. Costin, Monographsvand Suf\/eys in Pure and Apf)liéd Mather-riatics, Chapman and Hall/CRC, 2008.



Borel Summation (or resummation)

1. Start from
L9 !
a, x k
F=) ap™t,
k=0
. Convergent series | — | Summation | — | Analytic functions
Its Borel transform is (8o = 17/n1) l l
O =2 0O S == 0O
0 k EEES BEES
r a'kt SERSE= 8 Y82
— =) @ o @
f=2 a g
k=0 | |

Transseries | — | E-B Summation | — | Analyzable functions

This is the only known way to close functions under the listed operations.

If f converges, the Borel sum of fis given by

. (i) Algebraic operations: addition, multiplication and their inverses.

so(f(x)) = L o B(f(x)) = J f(0) e "dt (ii) Differentiation and integration.

E (iii) Composition and functional inversion.

(0 =0, standard Laplace)

A . . . 0. Costin, Monographsvand Sufvéys in Pure and Apf)liéd Matheﬁiatics, Chapman and Hall/CRC, 2008.
2) If f has do have poles in the positivereal axis f

is not Borel summable

How do we assign a unique function to the series for f?



Borel Summation (or resummation)

1. Start from
@)
a, x k!
f _ § :akxk+1,
k=0
. Convergent series | — | Summation | — | Analytic functions
Its Borel transform is (su!) = 7/n1) | |
. |8 £EQ S g8 2
. X gttt Borel-Ecalle summation| s =52 el
/= Z Ll ~ : :

k=0 T~ | |

Transseries | — | E-B Summation | — | Analyzable functions

This is the only known way to close functions under the listed operations.

Iff converges, the Borel sum of fis given by

i (i) Algebraic operations: addition, multiplication and their inverses.
so(f(x)) = L o B(f(x)) = J f(0) e "dt (ii) Differentiation and integration.
E (iii) Composition and functional inversion.

(0 =0, standard Laplace)

0. Costin, Monographsfand Sufvéys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.

2) I f has do have poles in the positivereal axis f
is not Borel summable



The Renormalized Green Functon
in perturbation theory

Consider the renormalized two-point Green function in perturbation theory

G2 = (D™ (gIT(gD) " . L = In(u?/ud)

lree

(L) =1- Z y(a)LF.
k=1
And it satisfies

|—20, + p(a)d, — 2y(a)| TI(L) = 0.



The Renormalized Green Function

Parisi, 1978-1980

The description£rovided by
(L) =1- ) p@L*
k=1

makes sense as long as
ﬂ2 < A2
We did a new derivation that do not use the

one-loop running but the
absolute convergence of the series




Going Beyond Perturbation Theory

Renormalons, non-linear ODE and Resurgence




Non-linear ODE

Can we extend the validity of the description?

=
G- = (D ()llg)) L= In(u/u)

lree

Minimal modification: add an unknown function R(«)

(L) = 1 +R@) — ) n(a)LF
k=1

This way the previously derived equations changes and the previous conclusion does not hold!

How do the the new equations look like?
The first equations is now

i Sﬂl 2 ’
2(R(x) + Dy(x) = 2y,(x) — = PR (x)



Non-linear ODE

» Using the results of Refereces

e A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902.05847].

e J.Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [1910.14507].

dR(@) 2q
da. = ﬂlazR(a) B a

y(@) =yi(@) + gR(a) + %(ZSaR(a)) + O(R*| aR),

T ﬂl(a()q_l_a +S) _ﬁ2q R(a) +a0 (ﬁi > 1) i @(R(a)Z)

1

(o) = ao + O(a?)

) =1 taa - O(a?)



Non-linear ODE

+ Using the results of Refereces

* A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902 05847]

ODE in o

8% J Bersm1 A.Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [19 .14507]

+ O(R(a)?)

. + g R(a) + %(2SC¥R(C¥)) + O(R? | aR),
Non-linear in R(a,)
yile) — aa + O(a?)

) =1 taa - O(a?)



Non-linear ODE

« Using the results of Refereces
Position of singularities in the Borel Transform

e A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902.05847].

e J.Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [191814507].

' +,51(GOQ+“+S)—,5261 R(a) =
J\B,a¥ p? e

L) + 0R@) |
7@ = (@) + g R@) + %<2saR(a>> + O(R*| aR), " *

b

Non-linear in R(a,)
yi(a) = aa + O(a?)

Yo(@) :== 1 + aqax + O(a?)



Non-linear ODE

+ Using the results of Refereces
Position of singularities in the Borel Transform

* A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902 05847]

ODE in o

* J.Bersini, A. Maiezza and J. C. Vasquez, Resyzgénce of the Renormalization Gsgup Equation, Annals Phys. 415 (2020) 168126, [19.14507]

,Bl(aoq +a+s)—p,q R() ( a
Ll
,Bl Qa

+ OR@)? }
‘ 71( R(a) + %(25051((05)) - @(R2 |aR),

P

Non-linear in R(a,)
yile) — aa + O(a?)

) =1 taa - O(a?)



Non-linear ODE

» Using the results of Refereces

e A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902.05847].

e J.Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [1910.14507].

dR(a) 2_q Pilapg +a+s)—p,q R(a) g .
= R(a) + 12 2 + a; <ﬂ1 1) + O(R(a))

y(@) =yi(@) + gR(a) + %(ZSGR(OC)) + O(R*| aR),

(@) = aa + O(a?) g = 1 since Green functions

depend on A and
) =1 taa - O(a?)
2

A? = ,ugeﬁla



Non linear ODE

The solution is given by

Large order
00

R(ag) = Y C"R(a,) o= PT gives Ry(a,)
k=0

HOW DO WE FIND THE FUNCTIONS R (a,) FORn > 0 ?

KEY CONCEPT OF “RESURGENCE”

0. Costin, Monographsvand Sufvéys in Pure and Apf)liéd Mather-riatics, Chapman and Hall/CRC, 2008.



A New Mathematical Framework for QF'T's: Resurgence

1. Consider the transseries A Borel(f) } Borel(f)

fx) = ) flaye ™
n=0

2. We are interested in the difference

(SQ_ 2 S9+)f(X) = Z (SQ—][n e S@+f,‘1) ? e_”’l/x

n

Sg- = Sp+ © Gy = Sp+ o (1 + discy)



Resurgence and the Alien Derivative

The Stokes Automorphism Gy has the following structure

: : S [y
Gy=1+5,=e'%8% := ¢®, where A, =logG,=log(l + 5, = Z =) Oy -
n
n=0

J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture

A, is the Alien Derivative (it has all the properties of a derivative)

The following property holds

X

[A@, 0 ] = 0, 0. = d/0ox denotes standard derivative

J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture



Bridge Equation

Consider again

dR(a,) fg
das = :BOaS2

Ra) + Polapg + a + s) — P q R(ay) - < a

fetr 2
7 o 5 1> + O(R(a,)?)

0
Apply the derivative with respect to the one parameter transseries (0. = 0/0 )

docR(a;) g Polapgg +a+s) — B q ocR(ay)

- 0-R(a) + + O0~R(a.)?
e o2 C (ay) 7 - (0cR(ay)?)

Both AQR((XS) and d-R(a,)

Compare with

- : Satisfy the same ODE
dA R : L) = AR . )

oR(a,) ‘e q A,R(a) + Polagg +a+s) — g AyR(a,) + 04, R(as)z)

das :BOas2 ,B(% s
then

AyR(a) = Ay0-R(a,) Ecalle Brigde Equation. A, Holomorphic constant

Apnot calculable for renormalons, fit using data!



Resurgence

AyR(a) = A 0-R(a,) Ecalle Brigde Equation

s el i
Plugging R(og) = Z - R, (a,) e’o*s above and equaling the powers of C" e/ in each side
k=0

. T . 2l
AgR (o) = (n+ 1)Ay eh*s R, (a,), In particular AyRy(a,) = Ay e?o%s Ri(a,) and soon ...

One can solve the recursion to find

e

R,() =

nx n—1
[60R0(x) — Z Sgeijj(x)] ,n > 1. which agree with the results of
0

=

O. Costin, Monographs'and Sufvéys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.



Self Complete QED

How do we connect the formalism of Alien Calculus with practical calculations in QCD?

A new Kind of fixed point

For QED, one has
Bla) = ay(a),

Which is associated with the non-linear ODE

R(x)(B2 — p1h) N R(x)(B2(B1h — B2) + f1R(x)x)

Bz {22

R'(z) = —R(z)+

+analytic terms,



Self Complete QED

Using renormalon Feynman diagrams as an indicator of the analytic structure of
the Borel transform

R(ag) = Y CKRy(a,) efm

2
Ro(2) = ) (-D)'z—n—)"'
k=0 "

Po

B(a) = Brent(@) — a—2_.

1+ea

And in this case

2w C

R™(a) = Ry (@) — =
1+ e

RPV(a) = PV. ( /O " e Ro(z)) .

1.0

ﬁ(a)O.G:-

0.0

0.8f

0.4

0.2f

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu




Applications

+ Adler function
i [ dre ™ (O[T (iu()i(0)] 0

raf | RN | i = (uay — ) 1(Q) ,

dIl (Q)
dQ?

D(Q) =4r’Q’

Dpert (@) = 14— 3 al [dn (=0)" + 4]
=0

2
Dresur g (Q) :DO(Q) — 216165008(0'2)
0

ArXiv: 2104.03095 and 2111.06792 + Cefom@® ( ) Dy(@Q%),

as(Q?)



Applications

* Hadronic Width of the Tau Lepton (caprini, Arxiv: 2304.03504)

The total hadronic branching fraction to the electron branching fraction of the T lepton is
expressed

I'(t” - v, + hadrons)
I'it -ve v,

R, =

Rr = 3 Sew ([Vud|? + [Vus[*) (1 + 69 + dpw + 650),

5@ — L f ds (1 5) (142 (D(s) — 1]
= — — — s) — 1.
2mi 8 m2 m2

|s|=m2

59 . =0.2629 + 0.0091c. Shen = 01966 = 0.0040,

resurg

c— —T796+0.44 We first note that the contribution of the perturbative part in (26) to the integral (30) is equal to 0.2629, in perfect
' o agreement with the result given in Fig. 3 of [42].



Conclusions

Independently of the instatons PT is divergent in some limit

The latter is related with the Landau pole that we rephrase in a resurgent
context

We show a resurgent non-perturbative completion can be achieved by adding
the non-perturbative function R(a)

R(a) satisfy a specific non-linear ODE and must be identified with the Borel-
Ecalle resumation of Renormalons



Conclusions

Resurgence provides a framework that at least allows one to extract from
the experiments nonperturbative information from first principles.

We have shed light on the connections between the theory of the
generalized Borel resummation based on the no-linear, ordinary
differential equations and the Alien Calculus.

We have shown the existence of new kind of fixed points that can make
QED well-defined in the UV

There are recent applications to QCD phenomenology and many more
applications in the future!
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One of the Big Questions

Vol. 52 (2021) Acta Physica Polonica B

THE BIG QUESTIONS IN
ELEMENTARY PARTICLE PHYSICS

GERARD 'T HOOFT

No 6-7

Faculty of Science, Department of Physics, Institute for Theoretical Physics

Princetonplein 5, 3584 CC Utrecht, The Netherlands
g.thooft@uu.nl

http://www.staff.science.uu.nl/"hooft101

"t Hooft, 2021

The question How do we sum the perturbation terms, or is there another

way to obtain the exact equations for all interactions? is correctly posed but
it seems to be not so urgent. We can arrange the diagrams in such a way that
diagrams calculated using perturbation theory determine with a satisfactory
accuracy how the elementary particles will interact under practically all
circumstances, as if we nearly have the ‘ultimate theory’ at our fingertips.

But _this is not true for many reasons. First, the perturbation expansions
are still formallz diver%enti so that we still do not quite understand what

the equations are at the most fundamental level. Secondly, there is one
force that can only be taken Into account at the most rudimentary level:
gravity. The gravitational force cannot be included in an optimal way; we
return to this shortly. The third reason for concern is that there appear to
be phenomena at a very large distance scale in the universe: dark matter
and dark energy. These require extensions of what we know: new particles
or new theories or both.



The Renormalized Green Function
in perturbation theory

Consider the renormalized two-point Green function in perturbation theory

G,L(sz) = ( tree(qz)H(q2)> ln(IMZ/IMO)

(L) =1- ) r(a)L*.

And it satisfies =1

[ zaL +ﬂ<a>a = 2y<a>] H<L> =

Expandmg in powers of L one gets the sets of equatlon

y(a) = (@)

2y()yi (@) + 2(k + Dypy (@) = fla)y(a)

. Klaczynski and D. Kreimer ArXiv: [1309.5061




Non linear ODE

dR(@) _ 2q , o Jildv e b9 g Kl | o (% = 1) +OR@? L) =1+R(@) - i v (@)LF

da: pa? p? a | v
e The solution to the above non-linear equation is

oo
R(ag) = Z C"R (a,) a’> eh (one parameter transseries)
k=0

e The Borel transform of the solution is of the form

B(R(g)) « )’

<

1 1
< nq)1+f 2 2 < nq)2+@(ﬂ1)
Z——

Po

from the bubble-diagrams expression then g = 1 and s is such that we get quadratic poles

e The above non-linear differential equation is precisely of the kind studied in

O. Costin, l\/lonographs'and Sufvéys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.



The Renormalized Green Function

Absolute convergence for II(L) = 1 — Z yk(a)Lk when

k=1
o Lk+1
7k+1()k e Yk o Yk
V(@)L Vi+1 Vi+1

L = In(u?/pl) p(a) = pia” + O(a”)

On the other hand, using the above set of equations one can show

2 2 2
im == )

k=00 Yri1 ap af ap

or

u? < A2 with A2 = 2T



Non-linear ODE

» It can be shown that

dR(a)  2q
o ,BlazR(a) L a

v(@) = y(a) + g R(a) + %(ZSaR(a)) + O(R*| aR),

- ﬂl(a()q_l_a +S) _ﬁ2q R(a) +Clo (ﬁﬁ = 1) i @(R(Q)Z)

|

e o O(a?)

vo(a) := 1 + aga + O(a?)

* A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78-91, [1902.05847].

e J.Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126, [1910.14507].



The Renormalized Green Function
beyond perturbation theory

Using the Wilson OPE, we know that at the non-perturbative level the green function is of
the form

v i Z k0
Gﬁ) = (D” (qz)l_[(qz)) . L=1In(u"/us)

lree

1

k
] s

0L — 53,

k=0

00 %
=0, <a(ﬂ), In ”‘—2> x

k=0

- X <@k> A2 o] ﬂgeﬂla

(4?)
In the OPE one has infinite number of C,

Can resurgence help on this issue? YES!



Bridge Equation

WE CAN FIT A, FROM DATA

DIFFICULT TO CALCULATE FOR INSTANTONS
SEE DORIGONI (ARXIV:1411.3585), ANICETO ET. AL.
(ARXIV:1802.10441) REVIEWS.

AND IMPOSIBLE FOR RENORMALONS
T’HOOFT (1979), ZINN-JUSTIN

MAIEZZA, VASQUEZ (2016-PRESENT)



Medianization

One can solve the recursion

AR (a) = (n+ 1) A, eP= R, ()

to find
nx ( =i )
e e
R (x) = o OpRo(x) — Z S(J)e_Jij(x) ,n > 1. which agree with the results
o i )
of

Taking the Cauchy principal value prescription to deal with the Borel transform of the functions above
does not automatically preserved the homorphism structure of the resummation procedure



Medianization

To solve the issue above, medianization is introduced and it is given by

Smed P — SO— - G(}/2 e SO+ = G0—1/2 :
Such that
Rmed(x) Es SmedR(x) ,

And since [Ag, dx] = 0, R™“(x) is a solution of the ODE

dR,  (« ang +a-+s)— fitane 00
med( s) ot q Rmed(as) o ﬁO( 09 ) ﬁl q med( S) 4 ap ﬁ -1 i @(R(aS)Z)
das :BOas2 ﬂ(% g 0



