BARYOGENESIS AND DARK MATER IN MULTIPLE HDDEN SECTORS

Department of Physics

PASCOS 2023

arXiv:2206.11314, submitted to **JHEP. With Hassan Easa, Thomas Gregoire and Catarina Cosme.**

DANIEL STOLARSKI

June 28, 2023

THE HIERARCHY PROBLEM

Why is the Higgs so much lighter than other mass scales (neutrino, GUT, Planck)?

 $\delta m_H^2 \sim \frac{\Lambda^2}{16\pi^2} \gg m_H^2$

NNATURAL NESS SOLUTION

Nnaturalness

hep-ph > arXiv:1607.06821

Nima Arkani-Hamed, Timothy Cohen, Raffaele Tito D'Agnolo, <u>Anson Hook</u>, Hyung Do Kim, David Pinner

 $ig(m_H^2ig)_i = -rac{\Lambda_H^2}{N}ig(2\,i+rig), \ -rac{N}{2} \leq i \leq rac{N}{2}$

NNATURAL NESS SOLUTION

Nnaturalness

hep-ph > arXiv:1607.06821

Nima Arkani-Hamed, Timothy Cohen, Raffaele Tito D'Agnolo, Anson Hook, Hyung Do Kim, David Pinner

 $\left(m_H^2\right)_i = -\frac{\Lambda_H^2}{N} \left(2\,i+r\right),$ $-\frac{N}{2} \le i \le \frac{N}{2}$

The SM is the sector with the lowest negative Higgs mass squared.

How do we explain our universe?

TIMELINE OF THE UNIVERSE

Time

TIMELINE OF THE UNIVERSE

Leptogenesis sector not one of the N. Fields are not charged under SM (or hidden) gauge groups.

Looks like original leptogenesis.

	spin	L
N_i	1/2	-1
S	1/2	-1
S^c	1/2	1
ϕ	0	0

Fukugita, Yanagida, PLB'86.

PASCOS 2023 DANIEL STOLARSKI June 28, 2023 6

Universe is dominated by asymmetric population of S (reheaton).

$$\frac{n_S - n_{S^c}}{n_S + n_{S^c}} \lesssim 10^{-6}$$

TIMELINE OF THE UNIVERSE

Time

Reheaton has very long lifetime and becomes non-relativistic.

Reheaton decay reheats the universe up to weak scale.

$$T_{\rm RH} \sim \sqrt{M_p \Gamma_S} \sim 100 \,{\rm GeV}$$

а

TIMELINE OF THE UNIVERSE

Time

REHEATON DECAY

Reheaton energy gets divided into N sectors by branching ratios.

$$\mathscr{L} = \lambda S^{c} \sum_{i} L_{i} H_{i} - m_{S} SS^{c}$$

$$\left(m_H^2\right)_i = -\frac{\Lambda_H^2}{N} \left(2\,i+r\right),$$

 $m_S \approx m_H(SM)$

Reheaton energy gets divided into N sectors by branching ratios.

$$\mathscr{L} = \lambda S^{c} \sum_{i} L_{i} H_{i} - m_{S} SS^{c}$$

$$\left(m_H^2\right)_i = -\frac{\Lambda_H^2}{N} \left(2\,i+r\right),$$

 $m_S \approx m_H(SM)$

Kinematic effects guarantee nearly all reheaton decay to the SM sector.

$BR(S \rightarrow SM) \approx 1$

Reheaton energy gets divided into N sectors by branching ratios.

$$\mathscr{L} = \lambda S^{c} \sum_{i} L_{i} H_{i} - m_{S} SS^{c}$$

$$\left(m_H^2\right)_i = -\frac{\Lambda_H^2}{N} \left(2\,i+r\right),$$

 $m_S \approx m_H(SM)$

Kinematic effects guarantee nearly all reheaton decay to the SM sector.

$BR(S \rightarrow SM) \approx 1$

Decays to sectors with higher Higgs mass parameter become 3 body.

$$BR(S \to (i = +1)) \sim 10^{-5}$$

 $BR(S \to (i > +1)) \sim 1/i$

BARYOGENESS

Lepton asymmetry also gets transferred to N sectors by branching ratios.

Electroweak sphaleron can transform lepton asymmetry into baryon asym.

Sphaleron is only active at temperatures above 130 GeV.

Kuzmin, Rubakov, Shaposhnikov, PLB'85.

 $\Delta B/\Delta L \propto \Gamma_{\rm S}^2$

EXOTIC SECTORS

What happens to SM if $m_H^2 > 0$? Susskind PRD'79.

12 DANIEL STOLARSKI June 28, 2023 PASCOS 2023

EXOTIC SECTORS

What happens to SM if $m_H^2 > 0$? Susskind PRD '79.

 $SU(2)_I \times U(1)_V$ broken down to $U(1)_{FM}$ by colour confinement at the GeV scale.

Proton mass is roughly the same as in SM.

6 quarks much lighter than QCD scale. Archer-Smith, Linthorne, DS, arXiv:1910.02083

REHEATON DECAY TO EXOTIC SECTORS

Lightest exotic Higgs will be similar in mass to SM Higgs.

$\mathcal{L} = \lambda S^c \sum L_i H_i - m_S SS^c$

PASCOS 2023 DANIEL STOLARSKI June 28, 2023 13

Have mild kinematic suppression to lightest exotic sector.

$$\mathsf{BR}(S \to (i = -1)) \approx 10^{-2}$$

Decays to sectors with higher Higgs mass parameter become 3 body.

$$BR(S \to (i = -2)) \sim 10^{-5}$$

 $BR(S \to (i < -2)) \sim 1/i^2$

REHEATON DECAY TO EXOTIC SECTORS

Lightest exotic Higgs will be similar in mass to SM Higgs.

$$\mathscr{L} = \lambda S^{c} \sum_{i} L_{i} H_{i} - m_{S} SS^{c}$$

$$\left(m_H^2\right)_i = -\frac{\Lambda_H^2}{N} \left(2\,i+r\right),$$

Have mild kinematic suppression to lightest exotic sector.

$$\mathsf{BR}(S \to (i = -1)) \approx 10^{-2}$$

Decays to sectors with higher Higgs mass parameter become 3 body.

$$BR(S \to (i = -2)) \sim 10^{-5}$$

 $BR(S \to (i < -2)) \sim 1/i^2$

DARK BARYOGENESIS

Can dark matter be the baryon in one of the hidden sectors?

 $\frac{\Delta L(\text{dark})}{\Delta L(\text{SM})} = \frac{\text{BR}(S \rightarrow \text{dark})}{\text{BR}(S \rightarrow \text{SM})} \ll 1$

Will it be enough?

Can dark matter be the baryon in one of the hidden sectors?

 $\frac{\Delta L(\text{dark})}{\Delta L(\text{SM})} = \frac{\text{BR}(S \to \text{dark})}{\text{BR}(S \to \text{SM})} \ll 1$

Will it be enough?

For SM-like sectors, sphaleron is less efficient than SM.

Not even close (need \sim 5).

Can dark matter be the baryon in one of the hidden sectors?

$$\frac{\Delta L(i=-1)}{\Delta L(SM)} = \frac{\mathsf{BR}(S \to (i=-1))}{\mathsf{BR}(S \to \mathsf{SM})} \sim 10^{-2}$$

EXOTIC DARK BARYOGENESIS

Can dark matter be the baryon in one of the hidden sectors?

$$\frac{\Delta L(i=-1)}{\Delta L(SM)} = \frac{\mathsf{BR}(S \to (i=-1))}{\mathsf{BR}(S \to SM)} \sim 10^{-2}$$

For exotic sectors sphaleron is active down to QCD scale so its much more efficient!

EXOTEDARK BARYOGENESS

 $\beta_{-1} = \mathsf{BR}(S \to (i = -1)).$

DSAGREEMENT

hep-th > arXiv:hep-th/0501082

Predictive Landscapes and New Physics at a TeV

Nima Arkani-Hamed, Savas Dimopoulos, Shamit Kachru

A No Baryons for $m_h^2 > 0$

Phase transition temperature $T_c <$

Sphaleron process is biased towards erasing any baryon asymmetry.

Estimate tiny final baryon asymme

$$< m_p$$
 .

etry
$$n_B/s \sim \Lambda_{QCD}/M_{Pl} \sim 10^{-18}$$
 .

Is the sphaleron fast enough to wash out asymmetry?

 $\Gamma_{sph} \sim e^{-\frac{f_{\pi}}{g_w T}}$ $H \sim T^2 / M_{Pl}$

Is the sphaleron fast enough to wash out asymmetry?

$$\Gamma_{sph} \sim e^{-\frac{f_{\pi}}{g_w T}}$$

 $H \sim T^2 / M_{P1}$

Depends sensitively on f_{π} and T_{c} , both non-perturbative parameters!

Is the sphaleron fast enough to wash out asymmetry?

$$\Gamma_{sph} \sim e^{-\frac{f_{\pi}}{g_w T}}$$

 $H \sim T^2 / M_{P1}$

Depends sensitively on f_{π} and T_{c} , both non-perturbative parameters!

Can also change rate with g_w .

Is the sphaleron fast enough to wash out asymmetry?

$$\Gamma_{sph} \sim e^{-\frac{f_{\pi}}{g_w T}}$$

 $H \sim T^2/M_{Pl}$

Depends sensitively on f_{π} and T_c , both non-perturbative parameters!

Can also change rate with g_w .

DANIEL STOLARSKI June 28, 2023 **PASCOS 2023** 18

CONCUSIONS

Built a model which gives a baryon asymmetry and dark matter in NNaturalness framework.

Dark matter is neutron in sector without Higgs vev.

Predict $\Delta N_{eff} \gtrsim 0.01$.

Interesting dark matter pheno.

CONCLUSIONS

$\mathscr{L} = \sum_{i} \left[S^{c} (L_{4}H)_{i} + \mu_{L} (\mathscr{C}L_{4}^{c})_{i} + M_{L} (L_{4}L_{4}^{c})_{i} \right]$

Integrate out vectrolike doublet:

$$\mathscr{L}_{\langle H \rangle \neq 0} \sim v_i W^+ \mathscr{C}_i S^c$$

 $\mathscr{L}_{\langle H \rangle = 0} \sim \mathscr{L}_i H_i S^{\iota}$

 $\Gamma_{2-body} \sim \lambda^2$

Three body decays:

REHEATON BRANCHING RATIOS

21 DANIEL STOLARSKI June _____

(a) i = -1 sector

$$\Delta N_{\rm eff} = \frac{4}{7} \left(\frac{11}{4}\right)^{4/3} g_{\star}^{h}(T_{\rm Dec}^{h}) \left[\frac{g_{\star}^{h}(T_{\rm RH}^{h})}{g_{\star}^{\rm SM}(T_{\rm RH}^{\rm SM})}\right]^{1/3}$$

$$\langle H \rangle \neq 0$$
 sectors:

$$\Delta N_{\rm eff}^{\rm Decay} \simeq 1.0 \times 10^{-4} \left[\frac{g_{\star}^{k=1}(T_{\rm RH}^{k=1})}{g_{\star}^{\rm SM}(T_{\rm RH}^{\rm SM})} \right]^{1/3} \left(\right.$$

 $\langle H \rangle = 0$ leading sector:

$$\Delta N_{\text{eff},j}^{\text{Decay}} \simeq 7.4 \left[\frac{g_{\star}^{j}(T_{\text{RH}}^{j})}{g_{\star}^{\text{SM}}(T_{\text{RH}}^{\text{SM}})} \right]^{1/3} \left(\frac{\beta_{j}}{1 - \beta - \gamma_{j}} \right)^{1/3}$$

 $\frac{1}{g_{\star}^{SM}(T_{\text{Dec}}^{SM})} \left[\frac{g_{\star}^{SM}(T_{\text{Dec}}^{SM})}{g_{\star}^{h}(T_{\text{Dec}}^{h})} \right]^{4/3} \frac{\Gamma(S \to \text{Hidden})}{\Gamma(S \to \text{SM})}.$

 $\left(\frac{\gamma_1}{10^{-5}}\right) \, \ln(k_{\max})$

If $G_{F,i}$ is not too big, they thermalize.

HEAVIER NEUTRINOS

If $G_{F,i}$ is not too big, they thermalize.

HEAVIER NEUTRINOS

Relic density proportional to mass.

How does neutrino mass scale with Higgs vev? See talk by Heeck yesterday.

If $G_{F,i}$ is not too big, they thermalize.

HEAVIER NEUTRINOS

Relic density proportional to mass.

How does neutrino mass scale with Higgs vev? See talk by Heeck yesterday. Majoranna: $m_i \propto v_i^2$.

If $G_{F,i}$ is not too big, they thermalize.

$$\sum_{i} \frac{\Omega_{\nu,i}}{\Omega_{\text{DM}}} \sim 2.4 \times 10^{-2} \left(\frac{1}{0}\right)$$

Relic density proportional to mass.

How does neutrino mass scale with Higgs vev? See talk by Heeck yesterday. Majoranna: $m_i \propto v_i^2$. $\frac{m_0}{0.06 \,\mathrm{eV}} \left(\frac{\gamma_1}{10^{-5}} \right)^{3/4} \left(\frac{N_{\mathrm{max}}}{250} \right)^{5/4}$

If $G_{F,i}$ is not too big, they thermalize.

$$\sum_{i} \frac{\Omega_{\nu,i}}{\Omega_{\mathsf{DM}}} \sim 2.4 \times 10^{-2} \left(\frac{m_0}{0.06 \,\mathrm{eV}}\right) \left(\frac{\gamma_1}{10^{-5}}\right)^{3/4} \left(\frac{N_{\mathsf{max}}}{250}\right)^{5/4}$$

Too much hot dark matter if there are more than 250 sectors.

HEAVIER NEUTRINOS

Relic density proportional to mass.

How does neutrino mass scale with Higgs vev? See talk by Heeck yesterday. Majoranna: $m_i \propto v_i^2$. /4

DRAC NEUTRINOS

Take neutrinos to be Dirac: $m_i \propto v_i$.

Neutrinos only thermalize up to $N_{\rm max}\simeq 2,500$.

$$\sum_{i} \frac{\Omega_{\nu,i}}{\Omega_{\text{DM}}} \sim 5 \times 10^{-3} \left(\frac{m_0}{0.06 \, \text{e}} \right)$$

No bounds from these sectors.

 $\left(\frac{\gamma_1}{10^{-5}}\right)^{3/4} \left(\frac{N_{\text{max}}}{2.500}\right)^{3/4}$

NON THERMAL NEUTRINOS

Neutrinos have energy $\sim m_s/3$ and do not interact.

$$\frac{\Omega_{\nu,i}}{\Omega_{\text{DM}}} \sim 2.4 \times 10^{-2} \left(\frac{m_0}{0.06 \,\text{eV}}\right) \left(\frac{\gamma_1}{10^{-5}}\right) \left(\frac{N_{\text{max}}}{10^5}\right)^{1/2}$$

Can compute free-streaming, these neutrinos are not hot.

Could be all of dark matter for N_{m}

- For larger vevs, neutrinos produced via direct reheaton decay: $S \rightarrow 3 \nu \bar{\nu} \nu$.

$$ax \simeq 3 \times 10^8$$
.

- Lightest baryon in exotic sector is the neutron.
- Neutrons have large self interactions: $\sigma_{nn} \sim 10^{-22} \,\mathrm{cm}^2 > 2 \times 10^{-24} \,\mathrm{cm}^2$
- Tension with bullet cluster bounds.

Neutrons will generically bind into nuclei.

Nuclei can get quite large (no Coulomb barrier!).

Dark nuclei can get very large A_{max}

Hardy, Lasenby, March-Russel, West, 1411.3739.

No problem with bullet cluster. Could be strange pheno.

$$_{\rm X} \sim 10^{24}$$
 .

Witten PRD '84.

Yes, but nuggets rapidly evaporate via emission of $\pi + \ell$. Process conserves all gauge quantum numbers but violates B-L.

Electroweak sphaleron active inside nuggets, will destroy baryons.

QCD phase transition is first order. Will there be pockets in the quark phase?

