The DarkSide Experimental Program: **Dark Matter detection with Argon targets**

PASCOS2023 UC Irvine, June 28th 2023

Claudio Savarese on behalf of the Global Argon Dark Matter Collaboration **Princeton University**

1. Dark Matter detection 101

- 2. The DarkSide Program
- 3. DarkSide-50:
 - low-mass searches
- 4. DarkSide-20k:
 - design and physics reach

Overview

Standard Model of Elementary Particles

Is something missing?

CMB

Multipole expansion CMB thermal anisotropies

Galactic clusters

Galaxies

Galaxy velocities Gravitational lensing (Bullet)

Rotation curves Gravitational lensing

Compelling evidence at all scales

The Sun orbits the galactic center

"Gas" of WIMPs

The Sun moves through a WIMP "gas" "WIMP wind" on Earth

GeV WIMP Scattered Nuclean recoil

- Non relativistic regime (v << c)
- Coherent scattering
 - enhancement (A²)
- Signal: nuclear recoils (NR)
- Rate exponential in obs. energy

Liquefied Noble Elements

- WIMP DM signal: nuclear recoils (NR)
- Electron Recoils (ER) are background
- High density
 - Self screening
 - Good scalability
- Easy(-ish) purification, also online
- Target Excitation:
 - Scintillation
 - Ionization
- ER (background) rejection
- NR quenching at low energies X

P		

		LAr	LKr	LXe
	Atomic number	18	36	54
Physical	Boiling point at 1 bar, T_{b} (K)	87.3	119.8	165.0
properties	Density at $T_b (g/cm^3)$	1.40	2.41	2.94
Ionisation	$W (eV)^1$	23.6	20.5	15.6
	Fano factor	0.11	~0.06	0.041
	Drift velocity $(cm/\mu s)$ at 3 kV/cm	0.30	0.33	0.26
	Transversal diffusion coefficient			
	at 1 kV/cm (cm ² /s)	~20		~80
Scintillation	Decay time ² , fast (ns)	5	2.1	2.2
	slow (ns)	1000	80	27/45
	Emission peak (nm)	127	150	175
	Light yield ² (phot./Mev)	40000	25000	42000
	Radiation length (cm)	14	4.7	2.8
	Moliere radius (cm)	10.0	6.6	5.7

Excellent discrimination power!

DarkSide-50

 β , γ rejection better than 1.5x10⁷

DEAP-3600

 β,γ rejection better than 10⁸

• XY from S2 light distribution

3D position reconstruction

• Rejection of multiple scattering

The DarkSide Program

A multi-stage approach

2012

2013 - 2018

DarkSide-10

DarkSide-50

- First prototype
- Helped to refine TPC design
- Demonstrated a light yield >9PE/keVee

- Science detector
- Demonstrated the use of UAr
- First background-free results
- Best limits for low mass WIMP searches

2025 - 2035

DarkSide-20k @ LNGS

Novel technologies

• First peek into the neutrino fog

• Nominal exposure: 200 t y

2030s - ...

Argo @ SNOLAB

- Ultimate LAr DM detector
- Push well into the neutrino fog
- Nominal exposure: 3000 t y

DarkSide-50

Phys.Rev.Lett. 130 (2023) 10, 101002 Phys.Rev.Lett. 130 (2023) 10, 101001 Phys.Rev.D 107 (2023) 6, 063001

2023 Results

Lower the energy threshold

- S2 >> S1 (23ph/e⁻ in DS50)
- 100% Trigger eff. > ~40PE

Lower the energy threshold \Rightarrow Look at the S2 only events

- 100% S2 identif. eff. > ~30PE
- Thresholds: <0.1keV_{ee}, 0.4keV_{nr}

Lower the energy threshold \Rightarrow Look at the S2 only events

• Thresholds: <0.1keVee, 0.6keVnr • 100% Trigger eff. > ~40PE

ER and NR energy seales

Phys. Rev. D 104, 082005

- First 100 days UAr dataset
- ER calibration from ${}^{37}Ar$ EC ($t_{1/2} = 35d$)

- MC template fit to DS50 AmBe and Am¹³C neutron spectra data
- Red and black data points from external neutron calibrations (ARIS, SCENE)

Datasei

- Exposure: 653.1 live-days
- Average **trigger rate**: 1.54 Hz

Quality cuts

- <u>Pulse-shape</u>: remove anomalous pulses due to the pile-up
- <u>Acceptance</u>: 95% at 4 Ne and 99% at >15 Ne

Selection Cuts

- Fiducialization
- S2/S1 against S2's from alphas
- Time veto agains spurious electrons

New high statistics Background Model

Background Mode

• High statistics MC samples

Internals

- <u>Argon-39</u>
- <u>Kripton-85</u>

Externals

- PMTs
- Cryostat

- Use of ionization signals only: down to $E_{th} = 0.05 \, \text{keV}_{ee}$ with 100% trigger efficiency.

 Many LDM models probed and world-leading limits. <u>4 papers published in Q2 of 2023 in PRD + 2 PRL</u> 18

The DarkSide-20k Detector

Defector overvew.

Nested detectors structure:

ProtoDUNE-like cryostat (8x8x8m³) - Muon veto SS vessel separating AAr from underground UAr. Neutrons and y veto WIMP detector: dual-phase TPC hosting 50t of LAr Fiducial mass: 20 tonnes

Multiple detection channels for bkg supression:

Neutron after cuts: < 0.1 in 100 t yr β and γ after cuts: < 0.1 in 100 t yr

Position reconstruction resolution:

- ~ 1 cm in XY
- ~ 1 mm in Z

• **ID: TPC** and **VETO** integrated

• TPC:

- top + bottom: PMMA + TPB
- lateral walls: Gd-PMMA + ESR + TPB
- anode + cathode + field cage: Clevios
- **TPC Readout:** 21m² of cryogenic SiPMs

• Veto:

- Single phase detector in UAr
- TPC lateral walls + additional top&bottom planes in Gd-PMMA. Mechanism:
 - Neutron thermalization
 - Capture moderated n on Gd
 - \circ Emission of 8 MeV shower of γ
- Veto Readout: 5 m² cryogenic SiPMs

21

Background Mitigation Strategies

Electron Recoils (ER)

³⁹Ar β decays — Use of UAr, PSD γ decays from U,Th chains + non actinides (⁴⁰K, ⁶⁰Co, ¹³⁷Cs) → Material selection, PSD

Position reconstruction Surface events Radon progeny -Surface cleaning Rn abatement

Nuclear Recoils (NR)

Radiogenic neutrons, mainly from (α, n) reactions.

Material selection, Neutron Veto Cosmogenic neutrons, from materials activation due to residual muon flux _____ Muon Veto Irreducible Atmospheric neutrinos

- Upper limits for a 1 TeV/ c^2 WIMP (90% C.L. exclusion) • 200 t-y: 7.4×10^{-48} cm²
- First probe of the argon neutrino fog at gradients n>1.5

Exclusion 90% C.L.

Thanks

Contacts: claudios@princeton.edu 373 Jadwin Hall, Physics Department, Princeton University (609) 258-4372

From above

- Excessive muon rate at surface
- Radioactive isotopes activated
- Neutron generation
- Go underground!

- Natural radioactive isotopes:
 U and Th chains, non-actinides
- Material assay and selection
- Particle identification: ER/NR
- Fiducialization: surface events

From below

- Onion-like structure:
 - 1. Muon veto
 - 2. Neutron veto
 - 3. WIMP detector

DarkSide-50 @ LNGS

MiniClean @ Snolab

ArDM @ Canfranc

DEAP @ Snolab

>400 scientists, >100 institutions distributed across 13 countries

Host aboratory: LNGS

- Below ~1400m of rock (3400 m.w.e)
- Muon flux reduction factor ~10⁶
- 3 main experimental halls (20x100x18 m³)

Argon from underground (UAr

- ³⁹Ar is a cosmogenic isotope
- β -decay with 565 keV endpoint and ~269y of half life
- ~1Bq/kg in atmospheric Ar
- Rejection possible with PSD, but there's pile-up!
- No activation in Ar from deep gas reservoirs (UAr)
- Suppression factor ~1400 demonstrated in DS-50
- Possibly higher depletion factor

Datasei

- Exposure: 653.1 live-days
- Average trigger rate: 1.54 Hz

Quality cuts

- <u>Pulse-shape</u>: remove anomalous pulses due to the pile-up of multiple S2's or S1+S2
- Acceptance: 95% at 4 Ne and 99% at >15 Ne

Selection Cuts

- Fiducialization
- S2/S1 against S2's from alphas
- Time veto agains spurious electrons

New high statistics Background Model

Background Model

 High statistics MC samples

Internals

- <u>Argon-39</u>
- Kripton-85

Externals

- PMTs
- Cryostat

DETESEI

- Exposure: 653.1 live-days
- Average trigger rate: 1.54 Hz

Quality cuts

- <u>Pulse-shape</u>: remove anomalous pulses due to the pile-up of multiple S2's or S1+S2
- <u>Acceptance</u>: 95% at 4 Ne and 99% at >15 Ne

Selection Cuts

- Fiducialization
- S2/S1 against S2's from alphas
- Time veto agains spurious electrons

New high statistics Background Model

- Requirements: 10.1140/epjp/i2018-11973-4
- Noise suppression: 10.1109/TED.2016.2641586, etc.
- Cryogenic amplifiers: 10.1109/TNS.2018.2799325
- Ganging: 10.1109/TNS.2017.2774779
- Final design: 10.1088/1748-0221/17/05/P05038

TPC planes area: 21m216 tiles arrange2100 readout channelsB100% coverage of TPC top and bottomSig

R&D and design phases completed. SiPM production completed.

Assembly of photo-sensors in NOA (LNGS clean-room facility) to start this summer.

Photo-detection system

Photo-Detection Unit

Tile

16 tiles arranged in 4 readout channelsPhotosensorBias distributionArray of 24 SiPMsDmSignal transmissionSignal pre-amplification

