
PASCOS 2023 - University of California Irvine

DarkPACK: A modular software to compute BSM squared
amplitudes for particle physics and dark matter observables

Marco Palmiotto (m.palmiotto@ip2i.in2p3.fr)

[2211.10376 M.P., A. Arbey, N. F. Mahmoudi]

Université Claude Bernard Lyon 1, France
Institut de Physique des 2 Infinis

Motivations

Problem
How to verify if a given BSM model can describe some dark matter observables

At the very basis, we need
• Cross sections
• Decay rates
• Matrix elements

maybe at 1 loop

To compute
• Relic density
• Direct and indirect detection

observables

Motivations

Problem
How to verify if a given BSM model can describe some dark matter observables

At the very basis, we need
• Cross sections
• Decay rates
• Matrix elements

maybe at 1 loop

To compute
• Relic density
• Direct and indirect detection

observables

Motivations

Problem
How to verify if a given BSM model can describe some dark matter observables

At the very basis, we need
• Cross sections
• Decay rates
• Matrix elements

maybe at 1 loop

To compute
• Relic density
• Direct and indirect detection

observables

Motivations

Problem
How to verify if a given BSM model can describe some dark matter observables

At the very basis, we need
• Cross sections
• Decay rates
• Matrix elements

maybe at 1 loop

To compute
• Relic density
• Direct and indirect detection

observables

Some solutions

• Many codes are
required

• Several passages of
input

• Mathematica
dependencies

DarkPack’s phylosophy

DarkPACK is conceived to have a unique and modular workflow

Unique
Lagrangian density → amplitudes, . . . → DM observables

Modular

• Possibility of stopping at any point of the chain. . .
• . . . to link it with external software
• More ease in writing custom functionalities ← Object-oriented structure

DarkPack’s phylosophy

DarkPACK is conceived to have a unique and modular workflow

Unique
Lagrangian density → amplitudes, . . . → DM observables

Modular

• Possibility of stopping at any point of the chain. . .
• . . . to link it with external software
• More ease in writing custom functionalities ← Object-oriented structure

MARTY

website: https://marty.in2p3.fr manual: 2011.02478

https://marty.in2p3.fr
https://arxiv.org/abs/2011.02478

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model

• By defining the fields of the model
• By adding potential terms
• By performing SSB if that’s in the model

• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model
• By defining the fields of the model

• By adding potential terms
• By performing SSB if that’s in the model

• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model
• By defining the fields of the model
• By adding potential terms

• By performing SSB if that’s in the model
• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model
• By defining the fields of the model
• By adding potential terms
• By performing SSB if that’s in the model

• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model
• By defining the fields of the model
• By adding potential terms
• By performing SSB if that’s in the model

• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

MARTY

With MARTY the user can
• Write a Lagrangian symbolically in a C++ source file
• By defining the gauge symmetries of the model
• By defining the fields of the model
• By adding potential terms
• By performing SSB if that’s in the model

• Symbolically get quantities such as

•
∑
|M|2, Γ

• Wilson coefficients
• Feyman diagrams

→ up to 1 loop level

• Output those results in a numerical C++ library

Content of DarkPACK - 1

DarkPACK and its documentation can be downloaded at

https://gitlab.in2p3.fr/darkpack/darkpack-public

(2211.10376 Palmiotto, Arbey, Mahmoudi)

https://gitlab.in2p3.fr/darkpack/darkpack-public

Content of DarkPACK - 2

The main content of the DarkPACK consists of
• The file MSSM.cpp which uses MARTY to build the MSSM and to do the

symbolical manipulations

• The folder mssm2to2, which contains the barebone numerical libary obtained
by compiling and running the model file

• The folder auxiliary_library, which contains
• The model-agnostic functionalities
• The model-specific functionalities (in mssm2to2)
• The model-specific source code for the programs (in script_mssm2to2)

Why the MSSM?
• Numerical tests
• Performance check

Content of DarkPACK - 2

The main content of the DarkPACK consists of
• The file MSSM.cpp which uses MARTY to build the MSSM and to do the

symbolical manipulations
• The folder mssm2to2, which contains the barebone numerical libary obtained

by compiling and running the model file

• The folder auxiliary_library, which contains
• The model-agnostic functionalities
• The model-specific functionalities (in mssm2to2)
• The model-specific source code for the programs (in script_mssm2to2)

Why the MSSM?
• Numerical tests
• Performance check

Content of DarkPACK - 2

The main content of the DarkPACK consists of
• The file MSSM.cpp which uses MARTY to build the MSSM and to do the

symbolical manipulations
• The folder mssm2to2, which contains the barebone numerical libary obtained

by compiling and running the model file
• The folder auxiliary_library, which contains
• The model-agnostic functionalities
• The model-specific functionalities (in mssm2to2)
• The model-specific source code for the programs (in script_mssm2to2)

Why the MSSM?
• Numerical tests
• Performance check

Content of DarkPACK - 2

The main content of the DarkPACK consists of
• The file MSSM.cpp which uses MARTY to build the MSSM and to do the

symbolical manipulations
• The folder mssm2to2, which contains the barebone numerical libary obtained

by compiling and running the model file
• The folder auxiliary_library, which contains
• The model-agnostic functionalities
• The model-specific functionalities (in mssm2to2)
• The model-specific source code for the programs (in script_mssm2to2)

Why the MSSM?
• Numerical tests
• Performance check

Setup of DarkPACK

It relies on two script
• lib_generate.sh to generate the library
• lib_setup.sh to copy the files in auxiliary_library in the needed paths

and to compile the final library

Detailed instructions on the scripts can be found in the README.md

You need to have MARTY installed, and define the environmental variable
INSTALLMARTYPATH as the path where it is built

How it works

MSSM.cpp

- Model definition
- Symbolical expressions
 for amplitudes
- Symbolical expressions
 for the decay widths

lib_generate.sh
mssm2to2

- barebone
 quantities

auxiliary_library

- Model-agnostic functions
- Model-dependent functions
- Programs source files

mssm2to2

- Interactive structure to
 compute basic quantities
- Improved input handling
- Additional algorithms

lib_setup.sh

- Computation of the relic density
- Computation of <σv>
- Running of the SM parameters

Link the library
with other tools

Some output

0.8 1 1.2 1.4 1.6

10−1

100

101

102

√
s(TeV)

σtot(C1 C̄1 → b̄ b) (pbarn)

DarkPACK
CalcHEP

0.5 0.6 0.7 0.8 0.9 1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

√
s(TeV)

Weff

DarkPACK
SuperIso

Preliminary results

10−1 100 101 102 103 104
10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12

mrelic/T

〈σ
v
〉(
G
eV

−
2
)

L ⊃ −gχχ̄χ −
φ

v

∑
fermions

gf mf f̄ f

• χ is a Dirac fermion and DM
candidate

• φ is a scalar mediator

Capabilities

Generating a user-friendly library containing
•
∑
|M|2, Γ

• 〈σv〉 for co-annihilation
• relic density computation

released MSSM
√

performance
√

consistency
soon releasing new models
√

stability
√

ease of use

Performance and portability
• Avoiding global variables
• Parallelization using C++ STL

Capabilities

Generating a user-friendly library containing
•
∑
|M|2, Γ

• 〈σv〉 for co-annihilation
• relic density computation

released MSSM
√

performance
√

consistency
soon releasing new models
√

stability
√

ease of use

Performance and portability
• Avoiding global variables
• Parallelization using C++ STL

Capabilities

Generating a user-friendly library containing
•
∑
|M|2, Γ

• 〈σv〉 for co-annihilation
• relic density computation

released MSSM
√

performance
√

consistency
soon releasing new models
√

stability
√

ease of use

Performance and portability
• Avoiding global variables
• Parallelization using C++ STL

Present and next development

• Improving the model-agnostic algorithms
• Releasing new models
• Include coscattering
• Solving one Boltzmann equation for every species
• Supporting models with multiple DM candidates
• Native functions to compute direct and indirect detection observables
• Considering more general scenarios, i. e. freeze-in

Conclusions

Today DarkPACK allows to
• Compute

∑
|M|2 and Γ at LO in any NP scenario

• Compute 〈σv〉 ,Ωh2 for coannihilation
• Have a library easy to link with other software
• Have a framework portable and performance-oriented
→ validated in the MSSM

Next, we will
• Validate with a new model and relese it
• Follow the development roadmap
• use DarkPack to see if specific NP models can help to explain DM

observables

Thanks for your attention!

Simpson rule vs trapezoidal rule pt. 1

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
10−2

102

106

1010

1014

√
s(TeV)

σ
to

t(
N

2
N

4
→

H
−
W

+
)

(p
ba

rn
)

DarkPACK
CalcHEP (Simpson)

CalcHEP (Trap.)

Simpson rule vs trapezoidal rule pt. 2

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
10−3

103

109

1015

1021

√
s(TeV)

σ
to

t(
N

2
N

4
→

h
0
H

0
)

(p
ba

rn
)

DarkPACK
CalcHEP (Simpson)

CalcHEP (Trap.)

