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Towers of Unstable States
● A wide variety of scenarios for new-physics predict towers of massive, 
unstable states with a broad spectrum of masses, cosmological 
abundances, and lifetimes.

String theory (string moduli, axions, etc.)

Theories with extra spacetime dimensions (KK towers)

Scenarios with confining dark/hidden-sector gauge groups (bound-
state resonances) 
Scenarios which lead to the production of primordial black holes 
with an extended mass spectrum (the black holes themselves)

● Such towers are a generic feature of, for example,...

● In some cases, such states can give rise to astrophysical signals, 
signals at colliders, etc.; in others, they are too heavy/short-lived.



  

Cosmological Consequences
● The presence of such towers can have a significant impact on early-
universe cosmology – even if the tower states are too heavy/short-lived 
to be accessible.

● Indeed (cf. Keith Dienes’s talk this morning), such towers can give rise to 
epochs of cosmic stasis: epochs wherein the abundances of multiple 
cosmological energy components (matter, radiation, etc.) remain 
effectively constant over an extended period.

● These epochs are often global attractors: if the basic conditions under 
which they arise are satisfied, the universe will evolve toward them.

Tightly ConstrainedLess Constrained

Many 
Possibilities

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛21]



  

Cosmic Stasis in a Nutshell
● Stasis requires a sustained injection of energy density from 
components with smaller equation-of-state parameters wi to components 
with a larger wi to compensate for the effect of Hubble expansion.

● A tower of unstable particles whose decays transfer energy density 
from matter (w = 0) to radiation (w = 1/3) provides one realization of stasis.
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● In this talk, I’ll examine the consequences of another realization of 
cosmic stasis – from the evaporation of primordial black holes.

Spectrum of Lifetimes

Tower of states



  

Initial PBH Mass Spectrum
● Let’s consider a population of primordial 
black holes (PBHs) with the mass spectrum 

● Such an extended mass spectrum arises 
naturally in scenarios in which the PBHs form 
after inflation via the collapse of perturbations 
with a scale-invariant power spectrum.  

fPBH(Mi,ti)

Mmin Mmax

Mi

Heaviest PBH 
evaporate completely 

before BBN

Planck upper bound 
on H

● The value of α is determined by the equation-of-state parameter wc for 
the universe during the epoch wherein the PBHs form.  

● Observational considerations 
likewise place constraints on the 
values of Mmin and Mmax:

[Carr ‛75; Green, Liddle ‛97; Kim, Lee, MacGibbon ‛99; Bringmann, Keifer, Polarski ‛02; Carr et. al. ‛17]

[Carr, Kohri, Sendouda, Yokoyama ‛09; Keith, Hooper, 
Blinov, McDermott ‛20; Carr, Kohri, Sendouda, 

Yokoyama ‛21; Akrami et al. (Planck) ‛20]

Lower α

Higher α



  

Evaporation
● Hawking radiation provides a mechanism via which 
energy density can be transferred from the PBHs (which 
behave like massive matter) to radiation.

● As a result, the PBH mass spectrum subsequently evolves according to 
a Boltzmann equation of the form

● The rate of change of the mass M of a single PBH due to this effect is

Graybody factor: for this 
range of M, ε(M) ≈ ε is 

approximately constant.

● The time at which a PBH evaporates completely 
(i.e., at which M = 0) as a result of this effect is

[Hawking, ‛74; Hawking ‛75]

[MacGibbon, Webber, ‛90; MAcGibbon ‛91]



  

Boltzmann Evolution
● The evolution of the Hubble parameter H(t) is given by the Friedmann 
acceleration equation, which in thes case takes the form

wBH = 0

● Expressed in terms of the cosmological abundance ΩBH ≡ ρBH/ρcrit, the 
system of equations governing the expansion of the universe is

...where we have defined

● Alternatively, one can change variables and express this system of 
equations in terms of ΩBH and its time-averaged value           since the 
time ti at which the PBH spectrum was initially established:



  

PBH-Induced Stasis is a Global Attractor

● The effective equation-of-state parameter w for the universe as a whole 
during the stasis epoch and the PBH abundance ΩBH are determined by 
the value of α:

● One can show that not only do these equations admit a stasis solution, 
but that this stasis solution is a global attractor. 

Stasis from PBH Evaporation Attractor Behavior

[Barrow, Copeland, Liddle ‛91; Dienes, Huang, Heurtier, Kim, Tait, BT ‛22]



  

Stasis as a (Finite) Cosmological Epoch

● For Mmin = 0.1 g at its minimum and Mmax = 109 g at 
its maximum, this yields a stasis epoch of duration

● The duration of this PBH-induced stasis epoch, expressed in terms of 
the number of e-folds of cosmic expansion that it spans, is given by

Potentially
PBH Stasis

● This is a significant duration indeed – potentially spanning a range of 
temperatures                                           ! 

Thus, events such 
as the electroweak 

phase transition 
could have occurred 
during such a stasis 

epoch!  



  

Cosmic Expansion History
● In cosmologies involving an epoch of PBH-induced stasis, the 
cosmological timeline includes a series of several different epochs after 
cosmic inflation ends.  Sequentially, these are: 

The epoch during which the 
PBHs are generated, wherein 
the equation-of-state parameter 
wc determines α.

An epoch during which the 
PBHs come to dominate the 
energy density of the universe.  
This epoch is matter-
dominated (w = 0).

The stasis epoch, which begins 
once the lightest PBHs begin to 
evaporate, and wherein w = w.

The usual RD epoch with w = 1/3, which begins after the heaviest 
PBHs evaporate and stasis ends.  Once this epoch begins, the 
expansion history coincides with that of the standard cosmology.

Comoving Hubble Horizon



  

Inflationary Observables
● In the simplest inflationary scenarios, 
primordial perturbations of the inflaton field 
give rise to the pattern of inhomogeneities 
observed in the cosmic microwave 
background (CMB).  

● The primary such observables are the tensor-to-scalar ratio r and 
spectral index ns that characterize the primordial perturbation spectrum. 
 

● However, modifications of the cosmological timeline beween the end 
of inflation and last scattering can alter predictions for CMB observables. 
 

● For example, in single-field, slow-roll models of inflation, these 
obserables are directly related to the slow-roll parameters ε and η:  

where

● The quantity ϕ denotes the value of the inflaton field at the time at 
which a perturbation with wavenumber equal to the pivot scale k exits 
the horizon.  Following Planck, we take k = 0.002 Mpc-1. [Akrami et al. (Planck) ‛20]



  

Inflationary Observables
● In order to determine ϕ we note that in the slow-roll approximation, the 
Hubble parameter H and scale factor a at the time at which this same 
mode exist the horizon are related to ϕ by  

● In order to illustrate how r and ns are modified in cosmologies involving 
an epoch of PBH-induced stasis, it is useful to work in the context of a 
concrete model for the inflaton potential… or two.  We’ll choose

Polynomial potentials:1 2 T-Model α-attractors:

● Combining these relations yields the integro-differential equation  

and

...which can be solved for a given form of V(ϕ).  

[Kallosh, Linde ‛13]



  

Inflationary Observables: Results
● In general, the modifications of the cosmological timeline associated with 
PBH-induced stasis serve to increase r and decrease ns.   

● As a result, depending on the inflationary model in question, tensions 
between the predictions for these observables and CMB data may be 
either eased or exacerbated.  



  

Gravitational-Wave Background
● The  cosmological modifications associated with a PBH-induced stasis 
epoch affect the gravitational-wave (GW) background in several ways. 
 

● Perhaps most importantly, the modified expansion history alters the 
contribution to the GW background generated by other sources.

● For concreteness, we’ll consider the simple case of a stochastic GW 
background which is homogeneous, isotropic, Gaussian, and 
unpolarized.

● The differential amplitude hk(a) depends on when 
the pertubation mode re-enters the horizon:   

● The differential GW energy density per logarithmic 
comoving wavenumber k for this case is:

LISA DECIGO

[Caprini, Figueroa ‛18]

Advanced LIGO



  

Gravitational-Wave Background
● During an epoch wherein w is constant, the wavenumber k which enters 
the horizon at scale factor ak scales with ak according to the relation

● Thus, the resulting present-day GW spectrum – or, more precisely, the 
differential present-day GW abundance per unit physical frequency f – is 
flat (i.e., f-independent) and given by

● This implies that: where

● In the standard cosmology, wherein the universe remains radiation-
dominated (w = 1/3) from the end of reheating until matter-radiation 
equality, ξ(w) = 0 throughout the entire duration.

[Caprini, Figueroa ‛18]



  

Gravitational-Wave Background

● In particular, in such a modified cosmology, the corresponding present-
day GW spectrum is given by

● By contrast, cosmology involving a PBH-induced stasis epoch with w = w 
– as well as a PBH-production epoch with w = wc and a PBH-dominated 
epoch with w = 0 – can differ significantly from this result.

Spectrum obtained in 
the standard cosmology 

for the same H

Piecewise function with different power-law 
exponents within different frequency intervals 

corresponding to different cosmological epochs.



  

Gravitational-Wave Background: Results
● Given the sensitivities of planned, proposed, and existing gravitational-
wave observatories, these modifications can have significant 
implications for the detection of the stochastic GW background.  

Effect of Varying α Effect of Varying Mmin and Mmax
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Summary

● A period of PBH-induced stasis can have a variety of cosmological 
implications.  These include both effects on inflationary observables 
and characteristic modifications of the gravitational-wave spectrum.

● Stable, mixed-component cosmological eras – i.e. stasis eras – are 
indeed a viable cosmological possibility – and one that can arise 
naturally in many extensions of the Standard Model. 

● PBH-induced stasis is a global attractor, and achieving it does not 
require any fine-tuning of initial conditions.

● For example, we have seen that a population of primordial black holes 
with an extended mass spectrum can give rise to a stasis era.
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