Probing Axions via Li Polarization
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Overview

Vacuum solutions of General Relativity results in the presence of Black Holes. BH
properties depend on the boundary conditions for the GR solutions.

Kerr BH predicted in 1963 describes massive spinning objects as one of the realistic
solutions of GR

The observation of a BH at galactic centre by Event Horizon Telescope (EHT) was one
of the confirmation of GR beyond the solar system and a confirming evidence for the
presence of BH especially supermassive BH (SMBH) at the centre of galaxies

Also, observation of gravitational wave from binary BH mergers by LIGO was another
triumph of GR at the galactic/cosmological scale

These new experiments can also indirectly constrain/observe the physics beyond the
standard model

Axion (like particles) as a BSM physics candidate (for dark matter) due to the interaction
with photons or indirect impact on massive objects can be probed with EHT or GW
experiments



Event Horizon Telescope

The Detection Method of EHT: behaves like virtual Earth-sized telescope using very long baseline interferometry

At frequencies of about 230 GHz (wavelength of
1.3 mm), Earth-size baselines can resolve an
apple on the Moon.




Kerr Geometry

In reality black holes are spinning objects. They can be well described by Kerr
metric.
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a = J/M is the angular momentum per unit mass of the black hole.
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Superradiance

Superradiance conditions are discovered under which waves incident on a rotating black hole
can extract energy and angular momentum from the black hole, leading to amplification and
scattering of the waves -

This occurs when the energy and angular momentum of the incident particles satisfy certain
conditions. Axions as dark matter candidates can interact with black holes. Axions can be
produced in the intense environment of a black hole's accretion disk and affect its properties.
They can also interact with electromagnetic fields, leading to the conversion of photons into
axions and vice versa.

The condition for superradiance around a rotating black hole is: w < mQ

* w: The frequency of the incident wave or particle.
* m: An integer representing the azimuthal mode number.
* (): The angular velocity of the rotating black hole.

The condition w < mQ states that the frequency of the incident wave or particle must be lower
than the product of the azimuthal mode number and the angular velocity of the black hole. This
condition ensures that the energy and angular momentum of the wave can be extracted by the
black hole, leading to superradiant amplification.



Axion Density Around a SMBH
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The superradiant instability depends on the dimensionless product of the BH mass and

axion mass as
-1 MBH n,
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Dark Matter Local Density in Halo:
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Light Polarization

Linear Polarization:

* Intrinsic to the emission process: the synchrotron emission, Bremsstrahlung,
curvature radiation, etc.
 Due to the propagation effect: the Compton scattering, plasma effect, etc.

But usual scattering process (like Compton scattering)
can not produce circular polarization!

Circular Polarization:
e Parity violating interactions
e |Intrinsic asymmetric distribution of left- and right-handed components in target

beams
 The presence of an anisotropic background in the medium

Axion-Photon Interaction is Parity Violating!



Light Polarization

Stokes parameters: | (the total intensity ), Q and U (linear polarization), and V (the circular polarization):
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Coherently Oscillating Axion Field
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Axion Field Around the Black Hole
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Axion field around the black hole is shown. The left and right panels are for the radial part of axion field
| R| (scaled to its maximum) and its real part Re[a] scaled to its numerical factor at @ = z/2 from
following equations with [ = 1, respectively. The radial distance has been scaled to r,;,,, ~ 8 which
means that My;m> = 0.25.
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Polarisation Angle of Linearly Polarized Emission
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Polarization Angle Ay of Linearly Polarized Emission

Physical Process

The Axion Polarization Angle

Propagation of Photons in an
Axion Background
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Axion-photon Conversion in
a Magnetic Field
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Sources of Circular Polarization

Sources of Circular Polarization

Physical Process

Form of the Axion Polarization Term

Axion Induced Propagation
Effect
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Contribution of Different Axion Channels to Light Polarization around SMBH
The polarization angle can be defined in terms of Stokes parameters as
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Dominant Contribution of Circular Polarization

From ALMA (EHT) data we have only a conservative upper bound on the measurement of the circular
polarization of M87* at 230 GHz which is around 0.8 %.
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The evolution of Stokes parameters at different distance from the center of black hole are shown in
this plot. The initial conditions are [, = 1, O, = 1/\/5, Uy = 1/\/5 and V, = 0.


https://arxiv.org/abs/2209.13572

Linear Polarization of Light from EHT and Axion Constraints
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Experimental Constraint from Circular Polarization of Light from M87
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Constraints on axion mass m,, and its coupling to photons ¢, = 2xg,, f, where f, = 10!°> GeV is assumed.

The bound from circular polarization of light from EHT is shown by gray color. Linear polarization of light puts
a bound from EHT presented by brown color. The experimental bound from CAST is shown by red color.
Astrophysical constraints are also shown.
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Size of the Supermassive Black Hole (SMBH) and its Image
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Event Horizon Telescope (EHT)

A Global Network of Radio Telescopes
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