Top-Down Aspects of Modular and Eclectic Flavor Symmetries

Hans Peter Nilles

Bethe Center für Theoretische Physik (bctp)

und Physikalisches Institut,

Universität Bonn

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 1/34

Outline

- The flavor structure of the Standard Model
- Traditional flavor symmetries
- Modular flavor symmetries
- Eclectic Flavor Group
- Local Flavor Unification
- Origin of hierarchies for masses and mixing angles
- Classification and lessons from top-down model building
- Open questions

Importance of localized structures in extra dimensions (Work with Baur, Knapp-Perez, Liu, Ratz, Ramos-Sanchez, Trautner, Vaudrevange, 2019-23)

The flavor structure of SM

Most of the parameters of the SM concern the flavor sector

- Quark sector: 6 masses, 3 angles and one phase
- Lepton sector: 6 masses, 3 angles, one phase and additional parameters from Majorana neutrino masses
- The pattern of parameters
 - Quarks: hierarchical masses und small mixing angles
 - Leptons: two large and one small mixing angle, hierarchical mass pattern and extremely small neutrino masses

The Flavor structure of quarks and leptons is very different!

Bottom-up approach

Discrete symmetries have been used extensively in the discussion of flavor structures

- Many fits from bottom-up perspective with discrete symmetries ($S_3, A_4, S_4, A_5, \Delta(27), \Delta(54)$ etc.)
- Flavor symmetries seem to require different models for quark and lepton sector (small mixing angles for quarks versus large mixing in lepton sector)
- Flavor symmetries are spontaneously broken. This requires the introduction of so-called flavon fields and additional parameters
- bottom-up model building leads to many reasonable fits for various choices of groups and representations

But we are still missing a top-down explanation of flavor

Traditional vs Modular Symmetries

So far the flavor symmetries had specific properties and we refer to them as traditional flavor symmetries

- they are linearly realised
- need flavon fields for symmetry breakdown

Another type of flavor symmetries are modular symmetries

- motivated by string theory dualities (Lauer, Mas, Nilles, 1989)
- applied recently to lepton sector (Feruglio, 2017)
- nonlinearly realised (no flavon fields needed)
- Yukawa couplings are modular forms

Combine with traditional flavor symmetries to the so-called "eclectic flavor group" (Nilles, Ramos-Sanchez, Vaudrevange, 2020)

String Geometry of extra dimensions

Strings are extended objects and this reflects itself in special aspects of geometry (incl. winding modes). We have:

- normal symmetries of extra dimensions as observed in quantum field theory traditional flavor symmetries.
- String duality transformations lead to modular or symplectic flavor symmetries
- They combine to a unified picture within the concept of eclectic flavor symmetries

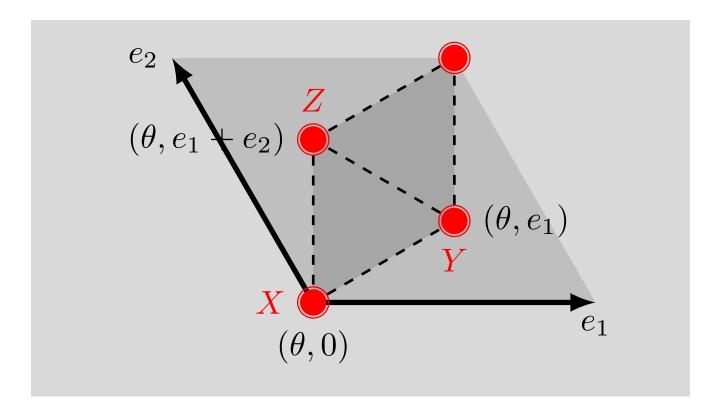
In the following we illustrate with a simple example

- twisted 2D-torus with localized matter fields
- relevant for compactifications with elliptic fibrations

Traditional Flavor Symmetries

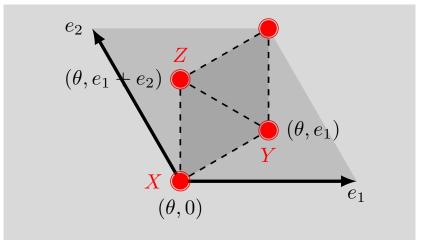
In string theory discrete symmetries can arise form geometry and string selection rules.

As an example we consider the orbifold T_2/Z_3



Discrete symmetry $\Delta(54)$

- untwisted and twisted fields
- S₃ symmetry from interchange of fixed points
- $Z_3 \times Z_3$ symmetry from string theory selection rules



- $\Delta(54)$ as multiplicative closure of S_3 and $Z_3 \times Z_3$
- $\Delta(54)$ a non-abelian subgroup of $SU(3)_{\text{flavor}}$
- e.g. flavor symmetry for three families of quarks (as triplets of $\Delta(54)$) (Kobayashi, Nilles, Ploger, Raby, Ratz, 2006)

String dualities

Consider a particle on a circle with radius R

- discrete spectrum of momentum modes (KK-modes)
- density of spectrum is governed by m/R (*m* integer)
- heavy modes decouple for $R \to 0$

Now consider a string

- KK modes as before m/R
- Strings can wind around circle
- spectrum of winding modes governed by nR
- massless modes for $R \to 0$

T-duality

This interplay of momentum and winding modes is the origin of T-duality where one simultaneously interchanges

momentum \rightarrow winding
 $R \rightarrow 1/R$

This transformation maps a theory to its T-dual theory.

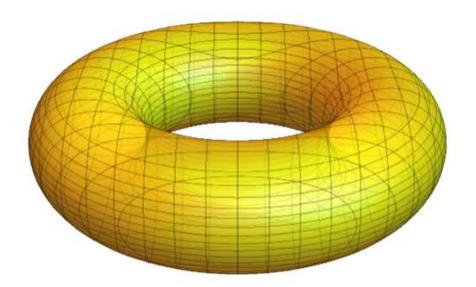
• self-dual point is $R^2 = \alpha' = 1/M_{\text{string}}^2$

If the string scale $M_{\rm string}$ is large, the low energy effective theory describes the momentum states and the winding states are heavy.

Can T-duality play a relevant role for flavor symmetry?

Torus compactification

Strings can wind around several cycles



Complex modulus M (in complex upper half plane)

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 – p. 11/34

Modular Transformations

Modular transformations (dualities) exchange windings and momenta and act nontrivially on the moduli of the torus. In D = 2 these transformations are connected to the group SL(2,Z) acting on Kähler and complex structure moduli.

The group SL(2, Z) is generated by two elements

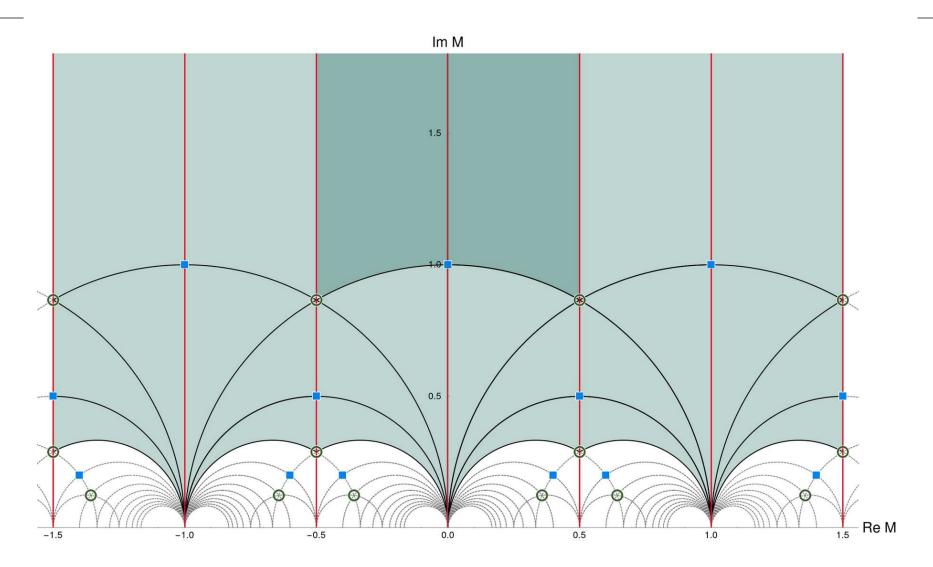
S, T: with
$$S^4 = 1$$
 and $S^2 = (ST)^3$

A modulus \boldsymbol{M} transforms as

S:
$$M \to -\frac{1}{M}$$
 and T: $M \to M + 1$

Further transformations might include $M \rightarrow -\overline{M}$ and mirror symmetry between Kähler and complex structure moduli.

Fundamental Domain



Three fixed points at M = i, $\omega = \exp(2\pi i/3)$ and $i\infty$

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 – p. 13/34

Modular Forms

String dualities give important constraints on the action of the theory via the modular group SL(2, Z):

$$\gamma: M \to \frac{aM+b}{cM+d}$$

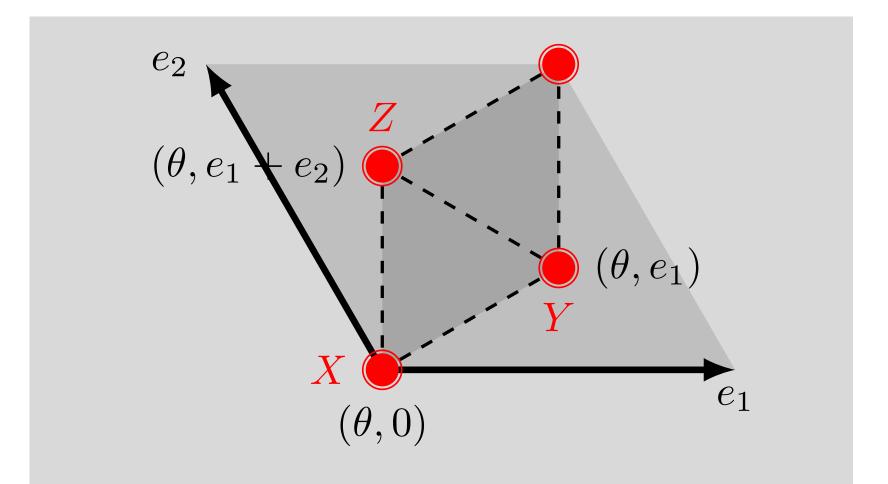
with ad - bc = 1 and integer a, b, c, d.

Matter fields transform as representations $\rho(\gamma)$ and modular functions of weight k

$$\gamma: \phi \to (cM+d)^k \rho(\gamma) \phi$$
.

Yukawa-couplings transform as modular functions as well. $G = K + \log |W|^2$ must be invariant under T-duality

Towards Modular Flavor Symmetry



Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 – p. 15/34

Modular flavor symmetry

On the T_2/Z_3 orbifold some of the moduli are frozen,

- I lattice vectors e_1 and e_2 have the same length
- angle is 120 degrees

Modular transformations form a subgroup of SL(2, Z)

- $\Gamma(3) = SL(2, 3Z)$ as a mod(3) subgroup of SL(2, Z)
- discrete modular flavor group $\Gamma'_3 = SL(2,Z)/\Gamma(3)$
- the discrete modular group is $\Gamma'_3 = T' \sim SL(2,3)$ (which acts nontrivially on twisted fields); the double cover of $\Gamma_3 \sim A_4$ (which acts only on the modulus).
- the CP transformation $M \rightarrow -\overline{M}$ completes the picture. Full discrete modular group is GL(2,3).

Eclectic Flavor Groups

We have thus two types of flavor groups

- the traditional flavor group that is universal in moduli space (here $\Delta(54)$)
- the modular flavor group that transforms the moduli nontrivially (here T')

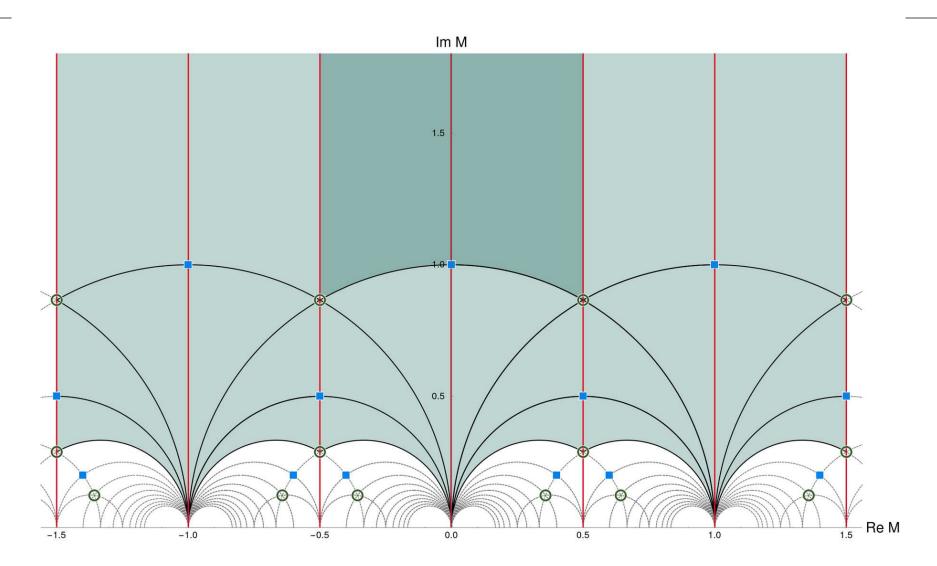
The eclectic flavor group is defined as the multiplicative closure of these groups. Here we obtain for T_2/Z_3

• $\Omega(1) = SG[648, 533]$ from $\Delta(54)$ and T' = SL(2, 3)

• SG[1296, 2891] from $\Delta(54)$ and GL(2, 3) including CP

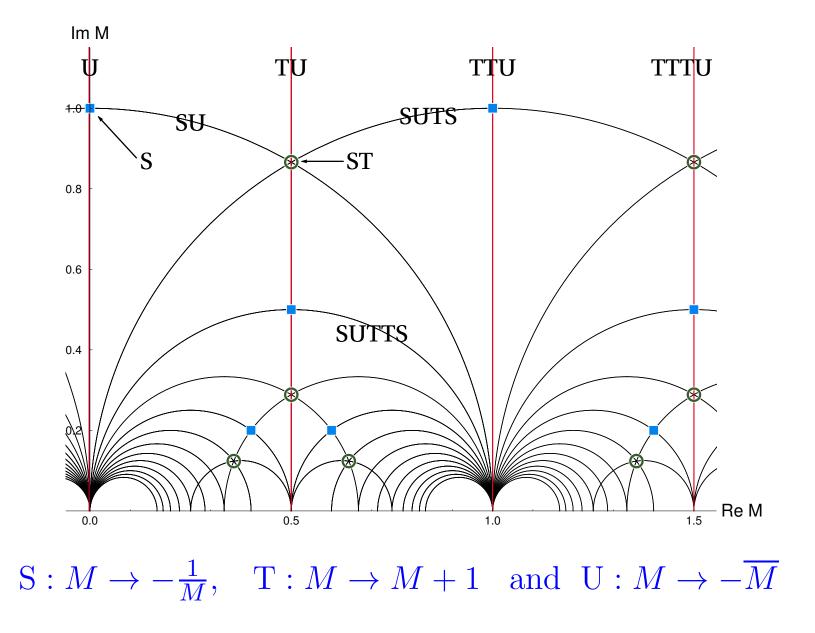
The eclectic group is the largest possible flavor group for the given system, but it is not necessarily linearly realized.

Local Flavor Unification



Moduli space of $\Gamma(3)$

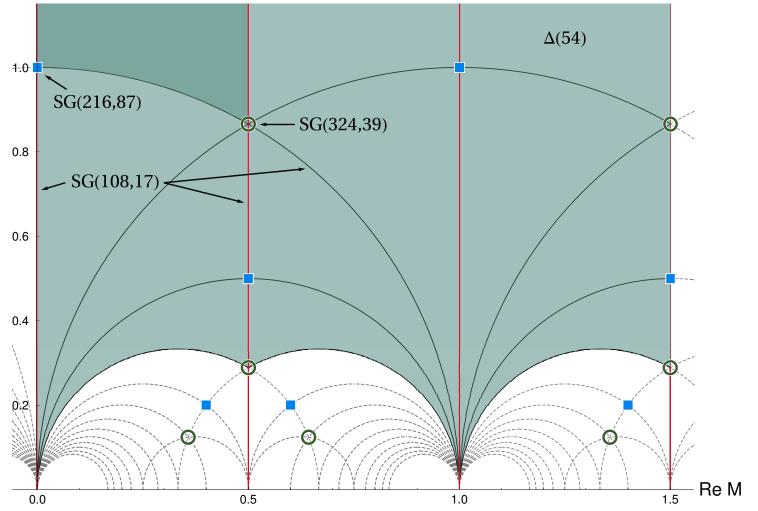
Fixed lines and points



Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 – p. 19/34

Moduli space of flavour groups

Im M



"Local Flavor Unification"

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 20/34

Unification of Flavor and CP

Summary of predictions of the string picture:

- traditional flavor symmetries (universal in moduli space)
- modular flavor symmetries and CP are non-universal in moduli space

They unify in the eclectic picture of flavor symmetry. You cannot just have one without the other.

The non-universality in moduli space leads to

- Iocal flavor unification at specific points in moduli space
- hierarchical structures of masses, mixing angles and phases in vicinity of fixed points or lines
- potentially different pictures for quarks and leptons

Classification

- Modular symmetry SL(2, Z) is intrinsically related to the 2-torus T² with two moduli T and U
- Chiral fermions require a twist Z_k of T^2 , embedded in 6-dimensiponal compact space.
- relevant Z_k are k = 2, 3, 4, 6
- for k = 3, 4, 6 the *T*-modulus is fixed to allow for the twist
- higher k lead to larger modular symmetries Γ_k
- at the expense of smaller traditional flavor symmetries
- ▶ k = 3: Ω(1) = SG[648, 533] from Δ(54) and T' = SL(2, 3)
- embedding in 6-dimensional space gives additional *R*-symmetries

Z_4 and Z_6

The 2-dimensional Z_3 orbifold gives already a promising result. What about the others?

- Z_6 gives modular group $\Gamma_2 \times \Gamma'_3 = S_3 \times T' = [144, 128]$
- traditional flavor group is abelian (one fixed point)
- Z_6 eclectic group is $[144, 128] \times Z_{36}^R$ (5184 elements)
- Z_4 gives S'_4 modular group with an intrinsic relation to the traditional flavor and R-symmetry
- traditional flavor symmetry is [64, 185] (including the *R*-symmetry) and Z_4 eclectic group is [384, 5614]

Interpretation of quark- and lepton-multipets is less clear (Work in progress) (Work in progress)

Z_2 orbifold: two moduli

Here the twist does not constrain the moduli T and U

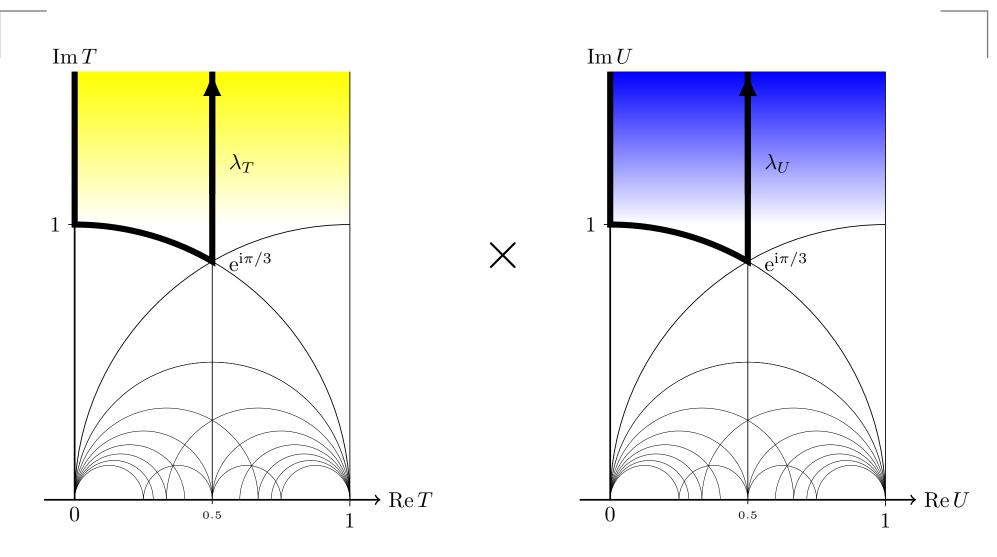
- and we have the full $SL(2,Z)_T \times SL(2,Z)_U$.
- The discrete modular group is $\Gamma_2 \times \Gamma_2 \times Z_2$,
- where $\Gamma_2 = S_3$ and
- Z_2 interchanges T and U (known as mirror symmetry).
- The traditional flavor group is the product of $(D_8 \times D_8)/Z_2$ and a Z_4 *R*-symmetry.

This leads to an

- eclectic group with 2304 elements (excluding CP)
- or 4608 elements (including CP)

with a rich pattern of local flavor group enhancements.

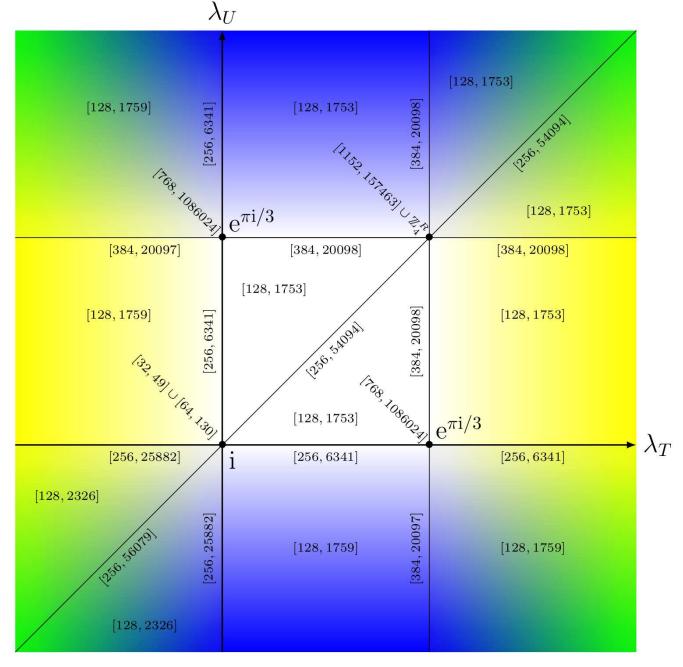
Z_2 -orbifold



Here we have two unconstrained moduli: T and U

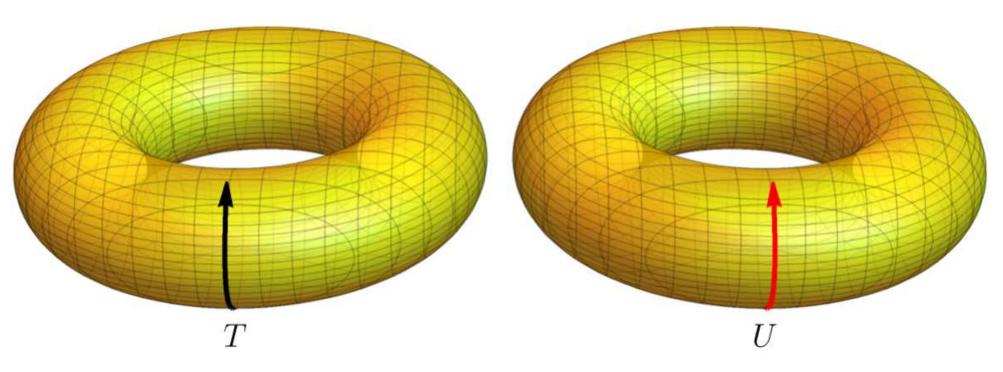
Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 25/34

Enhancement



Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 26/34

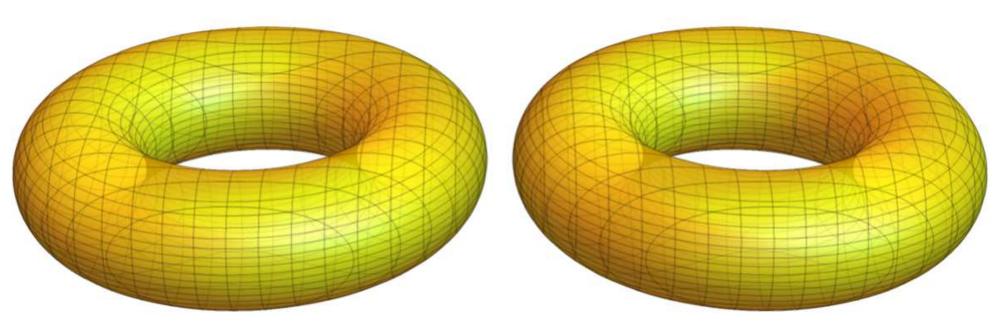
Auxiliary Surface: Double Torus



Auxiliary surface for two moduli: $SL(2, Z)_T \times SL(2, Z)_U$

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 27/34

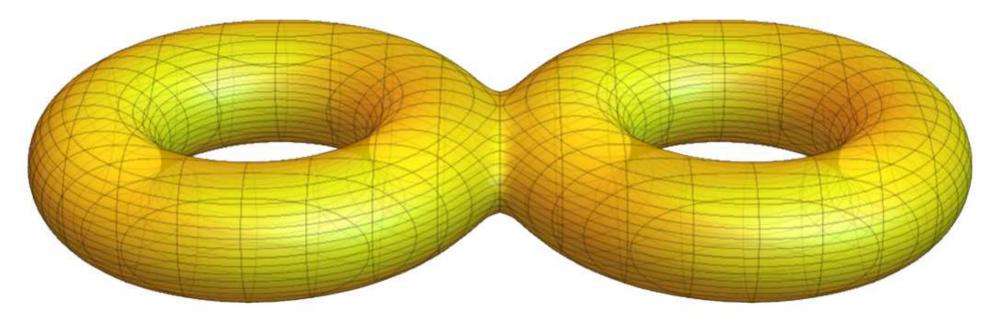
Riemann surface of genus 2



Auxiliary surface for two moduli: T and U

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 – p. 28/34

Riemann Surface of Genus 2



Auxiliary surface with three moduli: T + U + Wilson line

Top-Down Aspects of Modular and Eclectic Flavor Symmetries, Pascos2023, Irvine, California, June 2023 - p. 29/34

Siegel Modular Forms

This leads to a generalization of the modular group to larger groups Sp(2g, Z) characterized through Riemann surfaces of higher genus g: (Ding, Feruglio, Liu, 2021)

- for g = 2 the Siegel modular group Sp(4, Z)
- includes $SL(2, Z)_{U,T}$ and describes three moduli.
- Fundamental domain (6 points, 5 lines, 2 surfaces)
- Orbifold twists are connected to fixed loci in fundamental domain
- Discrete modular group $\Gamma_{g,k}$ ($\Gamma_{1,k} = \Gamma_k$)
- $\Gamma_{2,2} = S_6$ includes $S_3 \times S_3$ and mirror symmetry
- $\Gamma_{2,3}$ has already 51840 elements

(work in progress)

Messages

The top-down approach to flavor symmetries leads to a

- unification of traditional (discrete) flavor, CP and modular symmetries within an eclectic flavor scheme
- modular flavor symmetry is a prediction of string theory
- traditional flavor symmetry is universal in moduli space
- there are non-universal enhancements (including CP at some places (broken in generic moduli space))
- OP is a consequence of the underlying string theory
- spontaneous breakdown as motion in moduli space
- nonlinearly realized symmetries allow for uncontrollable Kähler corrections (Chen, Ramos-Sanchez, Ratz, 2020;

Chen, Knapp-Perez, Ramos-Hamud, Ramos-Sanchez, Ratz, 2022)

Top-Down versus Bottom-Up

This opens up a new arena for flavor model building:

- so far $\Delta(54) \times T'$ is the favourite "top-down" model
- need more explicit string constructions
- but it is not only the groups but also the representations and modular weights of matter fields that are relevant (top-down models very restrictive)
- there is still a huge gap between "top-down" and "bottom-up" constructions
- modular flavour group from outer automorphisms of traditional flavor group (Nilles, Ramos-Sanchez, Vaudrevange, 2020)

Open Questions

So far $\Delta(54) \times T'$ seems to be the favourite model

- numerous bottom-up models with these groups
- successful realistic string model from Z_3 orbifold

(see talk by Saul Ramos-Sanchez)

It has been observed that many of the successful fits are in the vicinity of fixed points and lines

(Feruglio, 2022-23; Petcov, Tanimoto, 2022; Abe, Higaki, Kawamura, Kobayashi, 2023)

- moduli stabilization favours boundary of moduli space, but leads to AdS-minima
- uplift moves them slightly away from the boundary and leads to flavor hierarchies (see talk by Saul Ramos-Sanchez)

Summary

String theory provides the necessary ingredients for flavor:

- traditional flavor group
- discrete modular flavor group
- a natural candidate for CP
- the concept of local flavour unification

The eclectic flavor group provides the basis:

- this includes a non-universality of flavor symmetry in moduli space
- allows a different flavor structure for quarks and leptons