

LATEST RESULTS FROM CUORE

Vivek Sharma 06/26/2023 PASCOS 2023

2v DOUBLE BETA DECAY

- Standard model 2nd order weak transition, extremely rare (half life of 10¹⁹-10²² yr)
- Observable when beta decay is kinematically forbidden

 $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2 ar{
u}_e$

NEUTRINOLESS DOUBLE BETA DECAY

- CUORE
- Beyond the Standard Model phenomenon, can occur if neutrinos are Majorana particles
- Lepton number violating process
- Potentially impact understanding of origins of matter/anti-matter asymmetry
- Constrains neutrino mass hierarchy, scale (model dependent)

 $(A,Z)
ightarrow (A,Z+2) + 2e^-$

Light neutrino exchange model

NEUTRINOLESS DOUBLE BETA DECAY

 10^{2}

 $m_{\beta\beta}$ (meV)

 10^{0}

 10^{-1}

- Experimental observable is decay rate
 - Depends on effective Majorana mass (m_{ββ})
 - Directly related to absolute neutrino mass scale
- The decay rate also depends on various nuclear and atomic effects.
- Limit on (m_{ββ}) can help rule out Inverted Hierarchy (model dependent)

DETECTION CHALLENGES

CUOR

- 0vββ signal is the summed electron energy at Q-value
 - Exceptional resolution essential to differentiate between the $0\nu\beta\beta$ and $2\nu\beta\beta$ spectra
 - **High Q-value** for practically observable half-life and avoiding gamma-ray backgrounds
- Very low background required for a detectable signal, going underground is necessary
- Exposure needs to be maximized
 - Large detector mass
 - Efficient duty cycle to lengthen livetime
- Choice of isotope should be compatible with detector technique

CUORE

- Cryogenic Underground Observatory for Rare Events
- Located at Hall A of Gran Sasso National Laboratory
- Low Background: 3600 m.w.e of overburden, muon rate 6 orders of magnitude less than surface, extensive shielding
- **High Q-value:** ¹³⁰Te has a ββ Q-value of 2527.5 keV
- Exceptional resolution: Operation at ~11 mK, resolution of ~8 keV at 2615 keV
- Exposure: 742 kg TeO_{2,} 206 kg ¹³⁰Te (34% natural abundance)

Images courtesy of LNGS: https://www.lngs.infn.it/en

CUORE CONSTRUCTION

- 988 natural TeO₂ crystals
 - Total mass: 742 kg
 - ¹³⁰Te mass: 206 kg
 - 5x5x5 cm³, arranged in 19 towers
- Housed in copper frame and held in place by PTFE spacers
 - Copper linked to thermal bath
 - PTFE spacers are also weak thermal links and contract more at low temperatures
- Tightly spaced crystals allow for coincidences to be exploited for background reduction

DETECTION PRINCIPLE

CUORE

- 988 TeO₂ crystals operated as bolometers; energy deposited is registered as temperature change
 - Read out by a NTD (Neutron Transmutation Doped) Ge thermometer
- Signal strength and detector resolution depend strongly on temperature (Debye's Law)
 - C ∝ T³
 - Detector operated at ~11 mK
- In CUORE, we observe an average resolution of ~8 keV FWHM at 2615 keV⁺

https://www.nature.com/articles/s41586-022-04497-4.pdf

[†]CUORE collaboration

DETECTION PRINCIPLE

- 988 TeO₂ crystals operated as bolometers; energy deposited is registered as temperature change
 - Read out by a NTD (Neutron Transmutation
 Doped) Ge thermometer
- Signal strength and detector resolution depend strongly on temperature (Debye's Law)
 - $C \propto T^3$
 - Detector operated at ~11 mK
- In CUORE, we observe an average resolution of ~8 keV FWHM at 2615 keV⁺

Example of a signal pulse

CRYOGENICS

- Pre-cooling performed by pulse tube cryocoolers
- Multistage design shields from thermal radiation
- Cooling power of 4 μW at 11 mK
 - Experimental volume of 1 m³ and payload of 1.5 tonne
 - Demonstrated stability over years of data taking

https://www.nature.com/articles/s41586-022-04497-4.pdf

The CUORE cryostat*

SHIELDING

- Experimental setup is externally shielded from radiation by multiple layers
- Neutron background:
 - Lateral 18 cm polyethylene layer with 2 cm thick H₃BO₃ panels
 - 20 cm thick borated polyethylene at the bottom
- Gamma background:
 - 25 cm thick lead laterally and at the bottom

External structure of CUORE

CUORE DATA TAKING

- Data taking began in 2017
 - Software and hardware optimizations since have improved stability of data taking
- Steady data taking since 2019 with 90% uptime
- Smooth transition to remote detector monitoring after pandemic lockdown
- Ονββ results for 1038 kg.yr exposure reported in Nature*

Exposure (tonne-yr) $\stackrel{-}{0}$

1 TONNE-YR DATA RELEASE

- Alpha region:
 - Flat background in [2650, 3100] keV
 - 1.40(2) x 10⁻² counts/(keV kg yr)*
- $Q_{\beta\beta}$ region
 - Flat background + ⁶⁰Co peak in [2490, 2575] keV
 - 1.49(4) x 10⁻² counts/(keV kg yr)*
- Background dominated by degraded alpha energy depositions (90%)

FIT RESULTS

*CUORE collaboration https://www.nature.com/articles/s41586-022-04497-4.pdf

SENSITIVITY

- Median exclusion sensitivity: 2.8 x 10²⁵ yr
 - 10⁴ toy experiments with background only hypothesis
 - Background and ⁶⁰Co event rate from fit to data
- m _{ββ} < 90 305 meV
 - Light Majorana neutrino exchange model
 - Range depends on nuclear matrix elements

m _{ββ} result : Cuore collaboration

https://www.nature.com/articles/s41586-022-04497-4.pdf

Limits on other isotopes:

GERDA Collaboration, Phys. Rev. Lett. 125, 252502 (2020) https://doi.org/10.1103/PhysRevLett.125.252502 CUORE Collaboration, Eur. Phys. J. C (2017) 77: 532 https://doi.org/10.1140/epic/s10052-017-5098-9 CUPID-Mo Collaboration https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.181802 CUPID-0 Collaboration, Phys. Rev. Lett. 123, 032501 (2019) https://doi.org/10.1103/PhysRevLett.123.032501 KamLAND-Zen Collaboration, Phys. Rev. Lett. 117, 082503 (2016) https://doi.org/10.1103/PhysRevLett.117.082503

Oscillation parameters:

Esteban, I. et al., J. High En. Phys. 2020 (178) https://doi.org/10.1007/JHEP09(2020)178

DOUBLE BETA DECAY RESULTS

- Double beta decay simulated in Geant4 with CUORE geometry and detector response
- Spectrum reconstructed by simultaneous fit of data with 62 MC simulated sources (2vββ + surface and bulk contaminations + muons)
 - MCMC Bayesian approach
 - Uniform prior for sources except
 muons
- For 900-2000 keV, more than 50% counts are 2vββ events

Conclusion

- CUORE
- CUORE has achieved 1 tonne year of exposure and continues stable data taking
- No evidence of 0vββ decay with 1038 kg.yr of data
 - Bayesian 90% C.I. limit*

 ${
m T}_{1/2}^{0
u}>2.2 imes 10^{25}{
m yr}(90\%~{
m C.I.})$

- Effective Majorana mass upper limit: 90-305 meV
- 2vββ half-life measurement with 300.7 kg.yr of data⁺

 ${
m T}_{1/2}^{2
u}=7.71^{+0.08}_{-0.06}({
m stat.})^{+0.12}_{-0.15}({
m syst.}) imes10^{20}yr$

• Stay tuned for higher exposure results!

*CUORE collaboration https://www.nature.com/articles/s41586-022-04497-4.pdf

[†]D. Q. Adams et al. <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.171801</u>

06/26/2023

EXTRA SLIDES

BACKGROUND BUDGET

TeO₂: natural radioactivity CuNOSV: natural radioactivity CuNOSV: cosmogenic activation *TeO*₂: cosmogenic activation CuOFE: natural radioactivity RomanPb: natural radioactivity ModernPb: natural radioactivity SI: natural radioactivity Rods and 300KFlan: natural radioactivity Environmental µ Environmental n Environmental y 1E-06

*CUORE collaboration https://doi.org/10.1140/epjc/s10052-017-5080-6

CUORE DATA PROCESSING

- Amplitude Evaluation
 - Using Optimum waveform filter to estimate amplitude of pulse

Average Pulse

- Gain Stabilization
 - Eliminating gain dependence on temperature using periodically injected pulses

- Calibration
 - First 3 datasets used internal ²³²Th source
 - Later datasets calibrated with external ²³²Th-⁶⁰Co source

- Coincidences
 - 88% of 0vββ events occur in a single crystal
 - Applying anti-coincidence veto

CUORE DATA PROCESSING

- Pulse Shape Discrimination
 - Using PCA (Principal Component Analysis) to eliminate pulses with a non-physical shape
- Data Blinding
 - Blind ROI using events from ²⁰⁸Tl peak for high level analysis

CUORE DETECTOR RESPONSE

CUORE

- 3-Gaussian signal peak
- Compton background
- Flat background
- 30 keV X-ray escape peak
- 30 keV X-ray sum peak
- Scale detector response from 2615 keV calibration fit to peaks in physics data

CUORE UPGRADE WITH PARTICLE IDENTIFICATION

- Next generation $0v\beta\beta$ decay search.
 - Scintillating bolometer technology.
 - Extremely good energy resolution, flexible choice of isotope.
- CUPID builds on CUORE, the largest bolometric array ever built.
 - Established and well understood infrastructure and environment.
 - CUORE has demonstrated stable and reliable operation over multiple years of exposure.
- Particle identification with scintillating Li₂MoO₄ bolometers has been demonstrated in the CUPID-Mo pilot experiment.*
 - Isotopic enrichment and crystals growth has been demonstrated and can be done at scale.*
- Background index goal of <10⁻⁴ counts/(keV·kg·yr).
 - Data driven based on CUORE, CUPID-0, and CUPID-Mo experiments.*
- Probe the full Inverted Hierarchy region down to $m_{\beta\beta}$ <12 meV (3 σ , favorable NME).
 - Using only 240 kg of ¹⁰⁰Mo.
- Next-next generation CUPID-1T capable of probing into Normal Hierarchy, or multiple isotope precision measurements in Inverted Hierarchy.

*https://cupid.lngs.infn.it/doku.php?id=cupid

pub:start, arXiv:1907.09376

CUORE UPGRADE WITH PARTICLE IDENTIFICATION

- Will operate in the same cryostat that currently houses CUORE
- Goal: Fully probe the "Inverted Hierarchy" region. Improve sensitivity to m_{ββ} by factor of ~5 relative to CUORE

Improved Sensitivity from Background Reduction

Particle identification

- Muon veto
- Increased Q value for reduced γ/β backgrounds

26

CUPID Technology

- $Q_{\beta\beta} = 2527 \text{ keV} < 2615 \text{ keV} \text{ peak}$
- Measure only heat
- No particle ID

- Q_{ββ}= 3034 keV: Most β/γ
 backgrounds reduced
- Measure both heat + light
- Particle ID to actively discriminate α particles