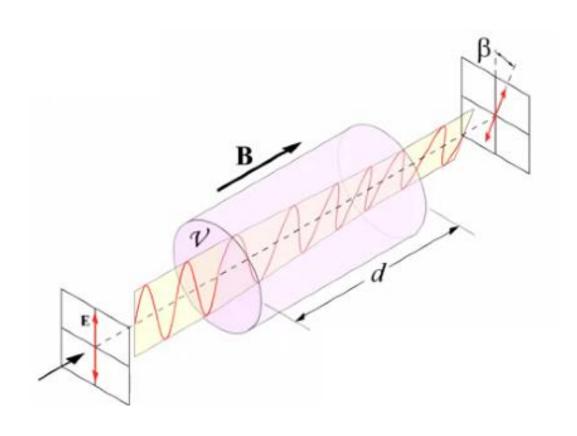
Is Cosmic Birefringence model-dependent?

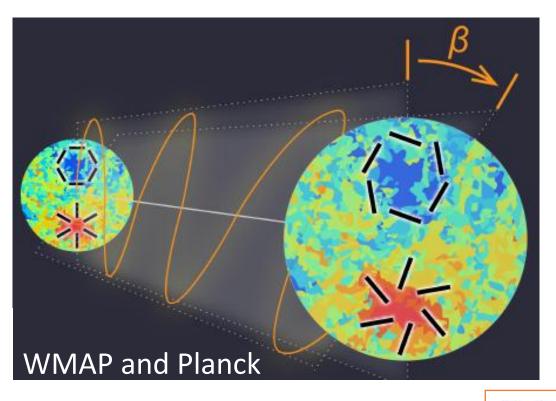
Lu Yin

Lu Yin, Joby Kochappan, Tuhin Ghosh, Bum-Hoon Lee. arXiv:2305.07937 [astro-ph.CO]

What is Cosmic Birefringence?

The rotation of the plane of linear polarization of photons





$$\beta = 0.342^{\circ} ^{+0.094^{\circ}}_{-0.091^{\circ}} (68\% \text{ C.L.})$$

 3.6σ

J.R.Eskilt, E.Komatsu, PRD 106 (2022) 6

Introduction to Cosmic Birefringence

- Cosmic birefringence is a parity-violating phenomenon, which might indicate the new physics beyond the standard cosmology (\Lambda CDM).
- Traditional explanation involves an axion coupled to the EM tensor via a Chern-Simons coupling.

 Ni (1977); Turner & Widrow (1988)

the effective Lagrangian for axion electrodynamics is

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}, \qquad (3.7)$$

where g_a is a coupling constant of the order α , and the vacuum angle $\theta = \phi_a / f_a$ ($\phi_a =$ axion field). The equations

• The axion can be dark matter or dark energy, which act as a "birefringence material" filling in our Universe

Introduction to Cosmic Birefringence

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \boxed{g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}} \\ \sum_{\mu\nu}F_{\mu\nu}\tilde{F}^{\mu\nu} = -4\mathbf{B}\cdot\mathbf{E}$$
 Parity Odd

$$\sum_{\mu\nu} F_{\mu\nu} \tilde{F}^{\mu\nu} = -4 \mathbf{B} \cdot \mathbf{E}$$
Parity Odd

The Equation of Motion modified to

$$(-\omega_{\pm}^2 + k^2) A_{\pm}(\eta) = 0$$
 $(-\omega_{\pm}^2 + k^2 \pm 4g_a k \theta') A_{\pm}(\eta) = 0$

Different phase velocities for RH(+) and LH(-) photon polarizations

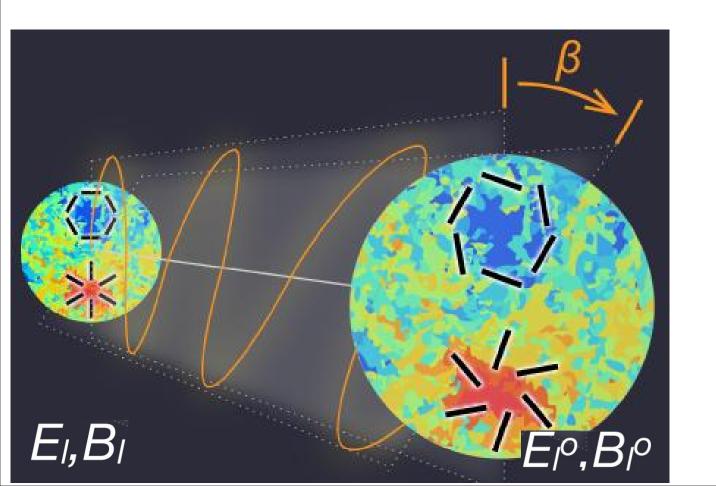
$$\frac{\omega_{\pm}}{k} \simeq 1 \pm \frac{2g_a \theta'}{k}$$

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

Introduction to Cosmic Birefringence

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

• CB rotation angle
$$\beta = -2g_a \int_{t_{emitted}}^{t_{obs}} dt \dot{\theta} = 2g_a \left[\theta(t_e) - \theta(t_o)\right]$$



E-B mixing by rotation of the linear polarization plane in CMB

$$E_{\ell}^{o} = E_{\ell} \cos(2\beta) - B_{\ell} \sin(2\beta)$$

$$B_{\ell}^{o} = E_{\ell} \sin(2\beta) + B_{\ell} \cos(2\beta)$$

$$E_\ell^{\rm o} \pm i B_\ell^{\rm o} = (E_\ell \pm i B_\ell) e^{\pm 2i\beta}$$

Cosmic Birefringence in the CMB

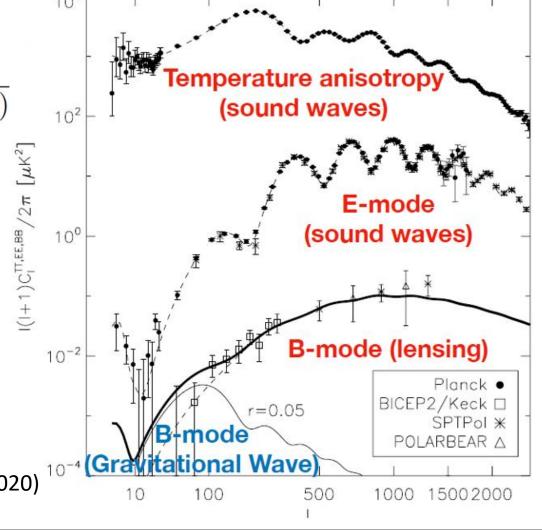
<E*B> correlation measures β

$$C_{\ell}^{EB,\text{obs}} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)$$
$$= \frac{1}{2} (C_{\ell}^{EE,\text{obs}} - C_{\ell}^{BB,\text{obs}}) \tan(4\beta) + \frac{C_{\ell}^{EB}}{\cos(4\beta)}$$

EB is generated by the difference between EE and BB spectra

If β = 0, the $C_l^{EB}=0$, EB power spectra is 0.

Planck Collaboration Int. LVII, Astron. Astrophys. 643, A42 (2020)



Cosmic Birefringence in the CMB

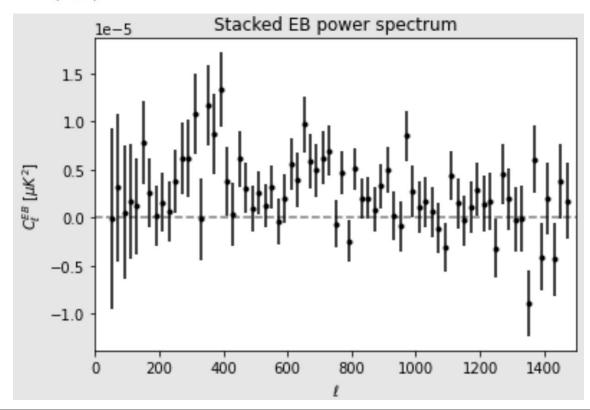
<E*B> correlation measures β

$$C_{\ell}^{EB,\text{obs}} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)$$
$$= \frac{1}{2} (C_{\ell}^{EE,\text{obs}} - C_{\ell}^{BB,\text{obs}}) \tan(4\beta) + \frac{C_{\ell}^{EB}}{\cos(4\beta)}$$

Observed EB Power Spectrum of the High Frequency Instrument of Planck

If
$$eta$$
 = 0, the $C_l^{EB}=0$.

J. R. Eskilt et al. (2023) Planck Collaboration Int. LVII, Astron. Astrophys. 643, A42 (2020)



Importent question: Is Cosmic Birefringence model-dependent?

The pseudoscalar fields of early dark energy

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} \phi)^{2} - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} g \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$V_{\text{EDE}}(\phi) = m^2 f^2 [1 - \cos(\phi/f)]^m$$

$$V_{\text{R\&R}}(\phi) = V_0 \left(\frac{\phi}{M_{\text{Pl}}}\right)^{2r}$$

$$V_{\text{EDE}}(\phi) = m^2 f^2 [1 - \cos(\phi/f)]^n \qquad V_{\text{R\&R}}(\phi) = V_0 \left(\frac{\phi}{M_{\text{Pl}}}\right)^{2n} \qquad V_{\alpha}(\phi) = V_0 \frac{(1 + \alpha_2)^{2n} \tanh\left(\phi/\sqrt{6\alpha_1}M_{\text{Pl}}\right)^{2p}}{\left[1 + \alpha_2 \tanh\left(\phi/\sqrt{6\alpha_1}M_{\text{Pl}}\right)\right]^{2n}}$$

Early Dark Energy model

Rocl 'n' Roll model

 α -attractor model

V. Poulin et al. (2018)

P. Agrawal et al.(2019)

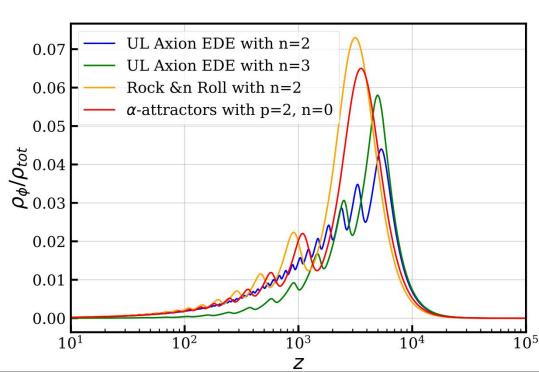
M. Braglia et al. (2020)

The pseudoscalar fields of early dark energy

$$\mathcal{L} = -\frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} g \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$V_{\text{EDE}}(\phi) = m^2 f^2 [1 - \cos(\phi/f)]^n \qquad V_{\text{R\&R}}(\phi) = V_0 \left(\frac{\phi}{M_{\text{Pl}}}\right)^{2n} \qquad V_{\alpha}(\phi) = V_0 \frac{(1 + \alpha_2)^{2n} \tanh\left(\phi/\sqrt{6\alpha_1}M_{\text{pl}}\right)^{2p}}{\left[1 + \alpha_2 \tanh\left(\phi/\sqrt{6\alpha_1}M_{\text{pl}}\right)\right]^{2n}}$$

$$V_{\alpha}(\phi) = V_0 \frac{(1 + \alpha_2)^{2n} \tanh \left(\phi / \sqrt{6\alpha_1} M_{\rm pl}\right)^{2p}}{\left[1 + \alpha_2 \tanh \left(\phi / \sqrt{6\alpha_1} M_{\rm pl}\right)\right]^{2n}}$$



The pseudoscalar fields of early dark energy

$$\mathcal{L} = -\frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} g \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

$$V(\phi) = m^{2} f^{2} [1 - \cos(\phi/f)]^{n} \quad V_{\text{R\&R}}(\phi) = V_{0} \left(\frac{\phi}{M_{\text{Pl}}} \right)^{2n} \quad V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

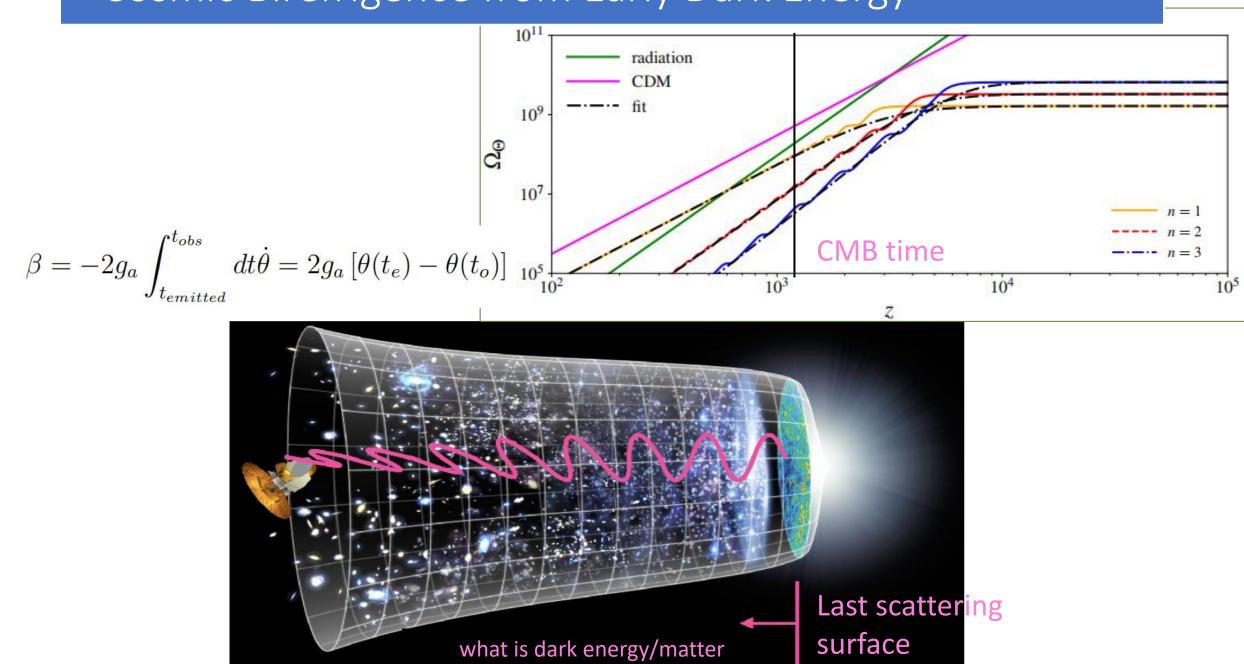
$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

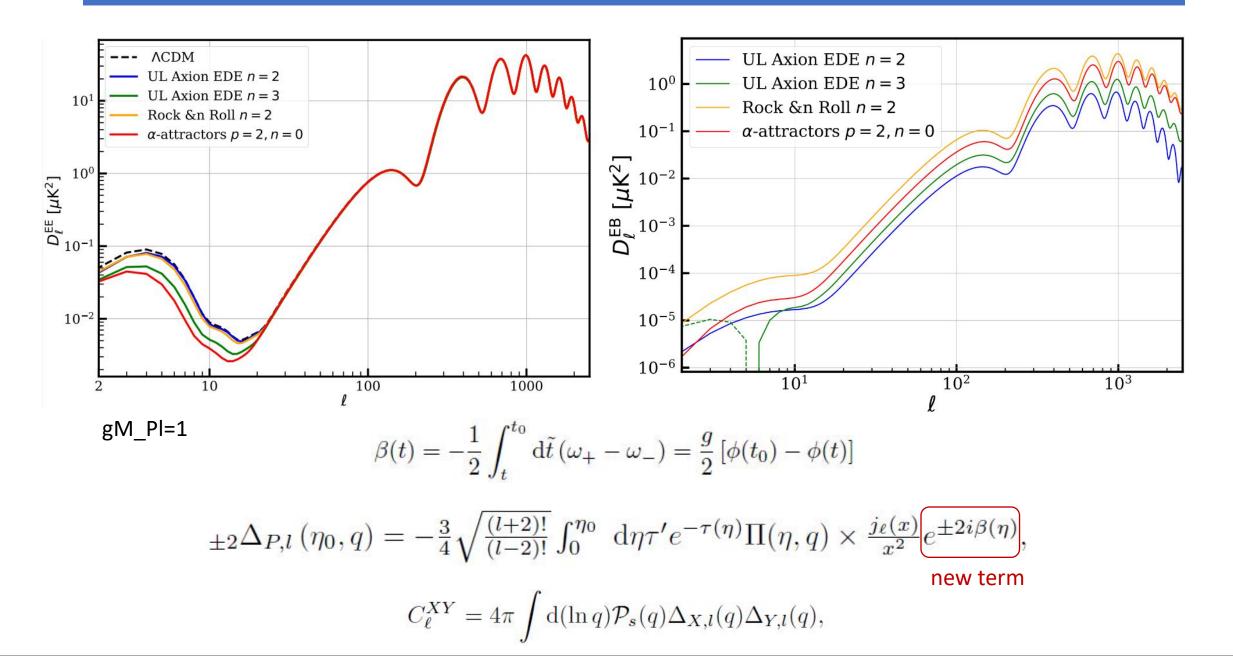
$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right)^{2p}}{\left[1 + \alpha_{2} \tanh \left(\phi/\sqrt{6\alpha_{1}} M_{\text{Pl}} \right) \right]^{2n}}$$

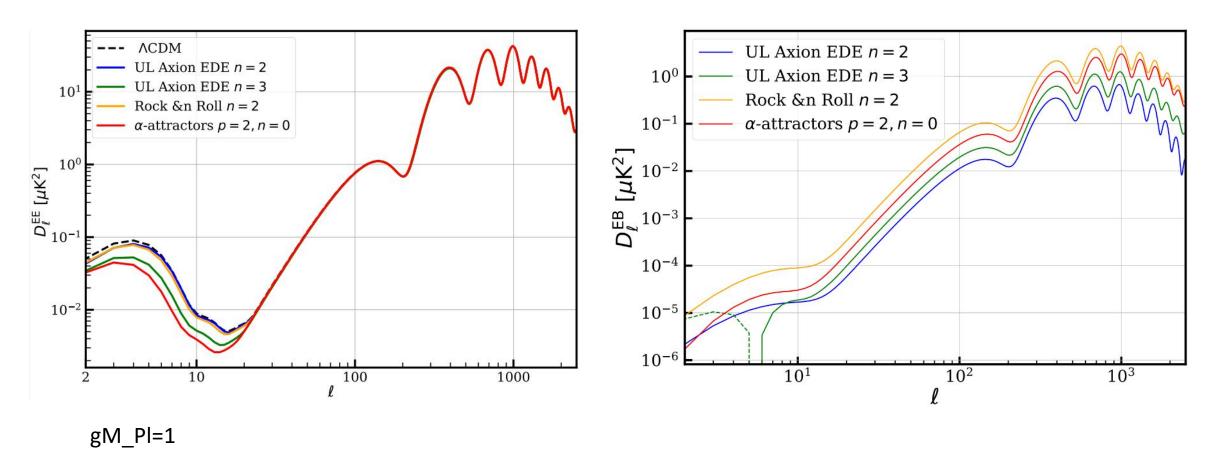
$$V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} + \alpha_{1} + \alpha_{2} + \alpha_{2}$$



Difference in EE and EB power spectra

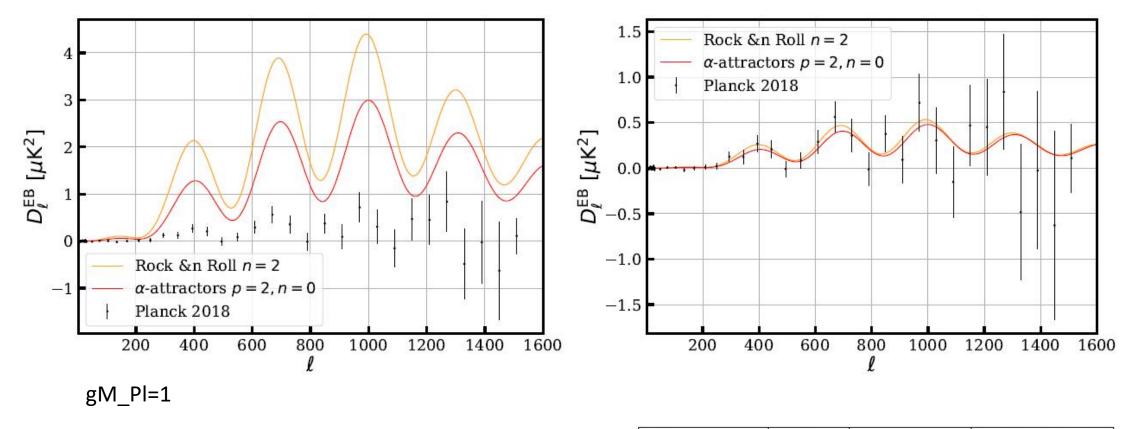


Difference in EE and EB power spectra



EB power spectra is an important smoking gun for different early dark energy models, beyond the EE spectra

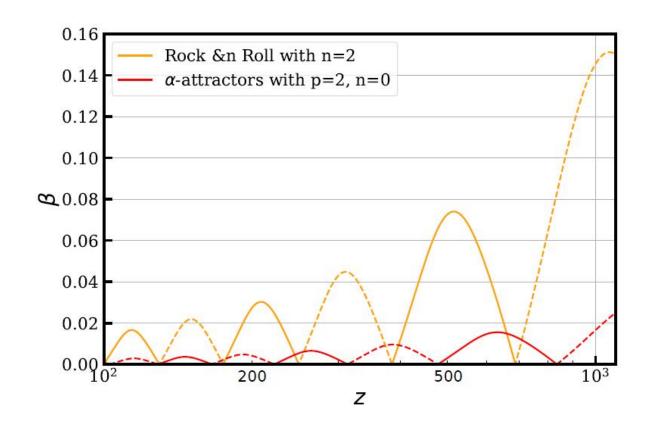
Best fit results form Planck observation



- 1. value of Chern-Simons term is model-dependent
- 2. current data can not distinguish the two models

Parameter	$\Lambda \mathrm{CDM}$	α -attractor	Rock 'n' Roll
gM_{Pl}	0	0.16	0.12
β at CMB	0	0.02°	0.15°

The rotation of the plane results from best fit of g



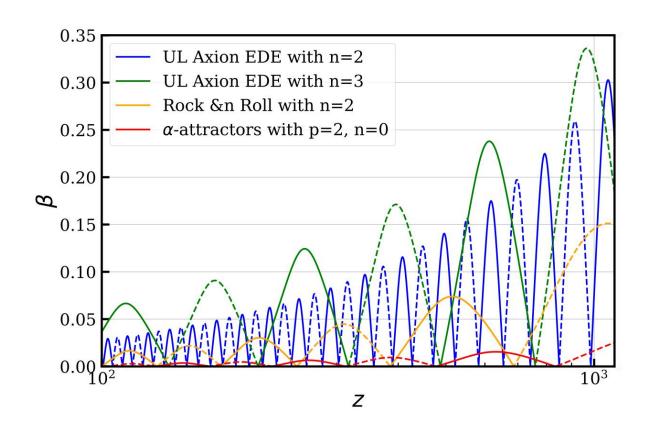
$$\beta = -2g_a \int_{t_{emitted}}^{t_{obs}} dt \dot{\theta} = 2g_a \left[\theta(t_e) - \theta(t_o) \right]$$

Parameter	ΛCDM	α -attractor	Rock 'n' Roll
gM_{Pl}	0	0.16	0.12
β at CMB	0	0.02°	0.15°

The value of g is model dependent.

Moreover, the rotation angle β is also highly model dependent.

The rotation of the plane results from best fit of g



$$\beta = -2g_a \int_{t_{emitted}}^{t_{obs}} dt \dot{\theta} = 2g_a \left[\theta(t_e) - \theta(t_o) \right]$$

Parameter	ΛCDM	α -attractor	Rock 'n' Roll
gM_{Pl}	0	0.16	0.12
β at CMB	0	0.02°	0.15°

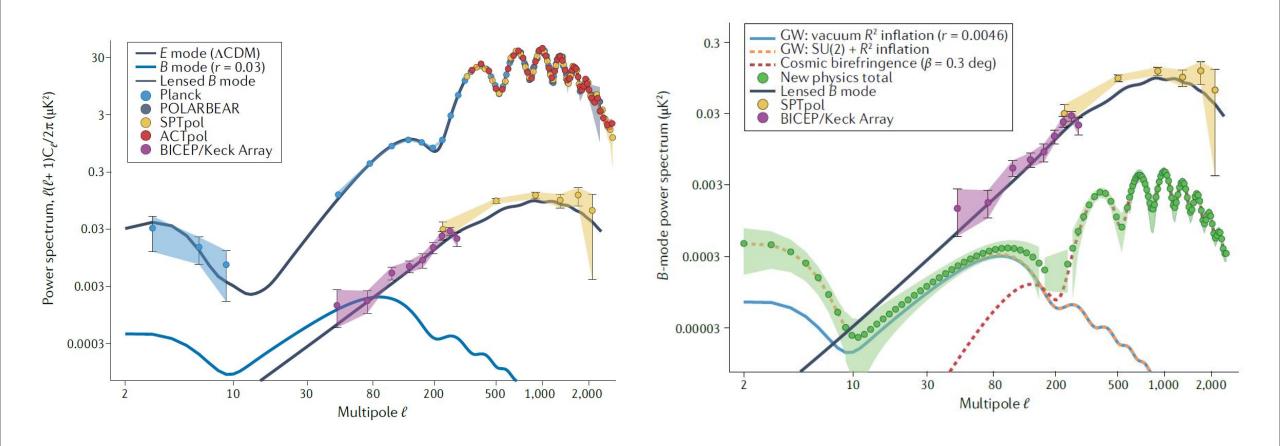
The value of g is model dependent.

Moreover, the rotation angle β is also highly model dependent.

Conclutions

- **Cosmic Birefringence** is a remarkable parity-violating effect, which is beyond the standard cosmology prediction;
- Recently, new breakthrough in CMB data analysis leads to a hint towards a nonzero CB rotation angle, $\beta = 0.34 \pm 0.09$ deg (68%CL; nearly full sky)
- We studied EB mode of Rock `n' Roll, and α -attractor scalar models for the first time. The value of g is model dependent. Moreover, the rotation angle β is also highly model dependent.
- The EB spectra alone can <u>not</u> distinguish the two models based on current data. It is an important smoking gun for different early dark energy models, beyond the EE spectra.

Accuracy of CMB Power Spectrum Observation



CMB power spectra

B mode to test the primordial gravitational wave