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Why on-shell?

0) 1st clue: amplitudes: the whole is SMALLER than the sum of its parts:

gauge boson amplitudes: many Feynman diagrams (~10 million for tree 10-gluon):

Mangano Parke review
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Why on-shell?

describe massless spin-1 particle (2 dof’s) via vector field (4 dof’s)

- Mmore efficient: focus on physical dof’s only
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Why on-shell?

1) various ways developed for expressing amplitudes: make various properties/symmetries
transparent

here:
massless & massive amplitudes in terms of 2-component spinor products
» uniform description of amplitudes of different spins
» properties of amplitudes under Lorentz manifest: Little Group
—> selection rules

» simple relations between massive <—> massless
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Why on-shell? *

2) bootstrapping amplitudes:

construct amplitudes based on their properties: little group; poles, cuts

— Sy + Yppr

 most general EFT amplitude
* model independent

rediscover SM * no issues of field redefinitions,

(more g.enerally, gauge theory, basis dependence
Higgs mechanism)

* natural approach as we try to
go beyond SM
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rediscover SM

Lie groups (gauge symmetry) from amplitudes: (textbook example eg Schwartz)

the consistent interactions of spin-1 particles —> LIE GROUPS
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3 massive degenerate spin-1 particles

Durieux Kitahara YS Weiss 19
Liu Yin ‘22

Lorentz (little group): most general amplitude:
CP ((12)[231(31) + [12](23)[31] + perm)/M*

+C%¢ (12)(23)(31)/A* + C 2P¢ [12][23][31]/A?

Shadmi PASCOS 23, UCI
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3 massive degenerate spin-1 particles

Durieux Kitahara YS Weiss 19
Liu Yin ‘22

Lorentz (little group): most general amplitude: 3, ; ————

- sas I

caadil

Ccabe | <12>[23]<31>+[12](23)[31] + perm)

~— " completely antisymmetric
O (12)(23)(B1)/A% + % [12][23][31)/A2

—> (%c completely antisymmetric

structure constants!

+ factorization of 4-points on 3-points: Jacobi identity
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3 massive degenerate spin-1 particles

Durieux Kitahara YS Weiss 19
Liu Yin ‘22

3. ¢

Lorentz (little group): most general amplitude:

- sas I

~adnll

Ccabe | <12>[23]<31>+[12](23)[31] + perm)

——— ™ cOm pletely antisymmetric

+Cabe <12><23><31>/A2 C ‘abe [12][23 18y !

—> (C%c¢ completely antlsymmetrlc

structure constants!

+ factorization of 4-points on 3-points: Jacobi identity
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natural to expect also general features of the Higgs mechanism to emerge from Lorentz
today:
o anatomy of the Higgs mechanism at the amplitude level

o application: on-shell derivation of SMEFT, HEFT amplitudes at low-energy

2023:

1. EWSB ?7? have only ad-hoc effective description: why is symmetry broken? what sets the scale”? what
stabilizes the scale?

2. know that we know nothing about the UV (*): motivates use of EFTs, on-shell construction of EFTs
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notations: spinor variables:

why suffer:

little group (LG) “charges” transparent —> selection rules

massless-massive relations transparent in LG covariant (“bolded”) massive spinor formalism
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amplitude basics: spinor variables:

amplitude is function of momenta, polarizations (s = 1/2, s = 1)

all can be written in terms of massless 2-component spinors:

u,(p) =pl or u_(p)=p)
i, (p)=I[p a(p)=(p

massless particle: one 3-vector/lightlike vector (momentum) —> one spinor

massive particle: two 3-vector/two lightlike vector (momentum+spin axis) —> two spinors
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amplitude basics: spinor variables: massless

p; = i)[i : LG (U(1))= Lorentz transformations keeping p; invariant:
i] > e?i]: charge+ 1

i) = e iy : charge — 1
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amplitude basics: spinor variables: massless

external leg 1 :
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amplitude basics: spinor variables: massive
Arkani-Hamed Huang Huang ‘17

Pi = pl-lzl +piI:2 lightlike vectors
— N\r;
p; = 1) i

LG ( SU(2) ) = Lorentz transformations keeping p; invariant:

iy — Wiy [i, > (W[ i

Shadmi PASCOS 23, UCI June 23



amplitude basics: spinor variables:

external leg 1 :

massless massive
i,h=1/2 1]
s =1/2 1] or 1
ih=—1/2 i) oo : Y

ih=+1 i1i] i, s=+1 iJi] or 1)) or i)i]

i,h=-—1 i)i) il = i1t )

can construct any SU(2) rep from symm
combinations of doublets
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amplitude basics: spinor variables:

amplitude = function of spinor products (ij), [ij], or (1)), [ij]

& Lorentz invariants  §;; = (p; + pj)2
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amplitude basics: more on LG covariant massive spinors

high-energy limit:
p=p~+p= =k+q

HE: k=0OE)~p g=Om*/E)

eg, only p]l=1 ~ p| survives; p]l=2 = ¢g| subleading

—> HE limit: simply unbold spinor structures

Arkani-Hamed Huang Huang ‘17
massless <—> massive amplitudes from (un)bolding
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anatomy of on-shell Higgsing

Balkin Durieux Kitahara YS Weiss ‘21
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anatomy of on-shell Higgsing

Balkin Durieux Kitahara YS Weiss ‘21

start from massless amplitudes of unbroken theory and “Higgs” to get low-energy massive amplitudes

extra Higgs legs non-dynamical: soft: H(g;) ¢, — 0O

probe field space

identify massless and massive amplitudes in high-energy/massless limit (where they coincide)

M(,..,n) = AU,...,n)+v Iim A, _(1,...,n;H(q)) + -

g~v—0
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anatomy of on-shell Higgsing

| Balkin Durieux Kitahara YS Weiss ‘21
O massless spinor structures get bolded:

n-pt amplitude (n+1)-pt amplitude
with external with external
vector n Higgses n, (n+1)

n-pt amplitude
with external
massive vector n

known (universal)
3-pt amplitude < g
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anatomy of on-shell Higgsing

| Balkin Durieux Kitahara YS Weiss ‘21
O massless spinor structures get bolded:

n-pt amplitude (n+1)-pt amplitude
with external with external
vector n Higgses n, (n+1)

n-pt amplitude
with external
massive vector n

oropagator < 1/(k + q)* = 1/m?
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anatomy of on-shell Higgsing

| Balkin Durieux Kitahara YS Weiss ‘21
O massless spinor structures get bolded:

n-pt amplitude (n+1)-pt amplitude
with external with external
vector n Higgses n, (n+1)

soft Higgs leg supplies
second lightlike
momentum to form
massive momentum

p=k+q
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anatomy of on-shell Higgsing

| Balkin Durieux Kitahara YS Weiss ‘21
O massless spinor structures get bolded:

n-pt amplitude (n+1)-pt amplitude
with external with external
vector n Higgses n, (n+1)

soft Higgs leg supplies
second lightlike
momentum to form
massive momentum

P=k+gq

symmetrization over LG indices: exchanging k, g in Higgs legs
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anatomy of on-shell Higgsing

| Balkin Durieux Kitahara YS Weiss ‘21
O massless spinor structures get bolded:

n-pt amplitude (n+1)-pt amplitude
with external with external
vector n Higgses n, (n+1)
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; ko + . T
k] |k] N

-
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3

massless spinor structure gets bolded k]k|] — p]p] ;

|
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L0~ D hy S TERED Y N7 - WY O S- — e - BT Si—
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anatomy of on-shell Higgsing

Balkin Durieux Kitahara YS Weiss ‘21

massless fermion: ] — 1]
massless vector i]i] — 1]i]

massless scalar amplitude with momentum insertion p;, = i](i
—> 1. massive scalar amplitude with momentum insertion P;

—> 2. massive vector amplitude p, =i]{i — 1J(i
( longitudinal vector from Goldstone boson )

Shadmi PASCOS 23, UCI June 23



anatomy of on-shell Higgsing

just as for gauge symmetry:

Higgs mechanism <—> Lorentz symmetry
from Lorentz symmetry pov:

bolding the massless spinor structure = covariantizing wrt full massive LG
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anatomy of on-shell Higgsing

Balkin Durieux Kitahara YS Weiss ‘21
O couplings get O(v) corrections:

C,=c,+#vc, +#vic, ,+...
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EFT applications



P

ic partners/ |

Tl

E.
E
il
v
f
G
3

Shadmi PASCOS 23, UCI June 23



didn’t quite work like this..

work our way up from the IR ~ -100m
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EFTs: model indendent parametrization of BSM

on-shell: focus on the physical DOFs
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On-shell applications to EFTs (massless)

O selection rules: explain zeros In

 matrix of anomalous dimensions of EFT operators (loop cuts & generalized cuts)
Cheung Shen ’15

Bern Parra-Martinez Sawyer ’20

* interference of SM x EFT amplitudes (tree)
Azatov Contino Machado Riva ‘16

o derive anomalous dimensions of EFT operators (loop cuts & generalized cuts)

Barratella Fernandez von Harling Pomarol "20
Bern Parra-Martinez Sawyer 20

Jiang Ma Shu 20

De Angelis Accettulli-Huber ’21

Barratella '22
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On-shell applications to EFTs (massless + massive)

YS Weiss -
o count (& construct ) bases of EFT operators: Ma Shu Xiao -

Remmen Rodd

Li Ren Shu Xiao Yu Zheng'’

Durieux Machado

also used in Henning Melia Murayama

Shadmi PASCOS 23, UCI June 23
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iIn many of these;

amplitude

|
%

amplitude > LHC
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On-shell applications to EFTs (massless + massive) *

work directly with amplitudes
bottom-up EFTs: parametrize our ignorance about the UV

bottom-up construction of amplitudes does just that
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EFT via on-shell bootstrap

usually: start with SM fields: most general &

consistent with symmetries (global, gauge)
on-shell: start with SM particles: most general &/
consistent with symmetries (global, gauge)

<L = Z Ci@i(¢1, 9¢n)

1-1 correspondence

Shadmi PASCOS 23, UCI June 23



on-shell EFTs

bootstrapping amplitudes:

 most general 3-points (renormalizable + higher-dim): dictated by little group
* factorizable parts of higher-point amplitudes (determined by 3-pts)

* higher-point contact terms: dictated by little group

—> starting with the massive (and massless) particles we know:
construct most general amplitudes

Shadmi PASCOS 23, UCI June 23



contact-term (EFT) part of amplitude: VS Weiss 48
Durieux Kitahara YS Weiss 19

local: no poles
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carries LG weight; “stripped” off
all Lorentz invariants s;;
“stripped contact term” SCT
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o =
# o
A polynomial in Lorentz
. . . iInvariants ..
carries LG weight; “stripped” of | | Y |
. . subject to kinematical constraints,
all Lorentz invariants S )
“stripped contact term” SCT €9, S12 T 813 T 523 = Z i

derivative expansion

easy part!
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2 to 2 with massless Initial state particles:

[]<> Ry f
CETTN P(F’F)

SCT scattering angle

scattering angle
and
decay angles
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2 to 2 with massless Initial state particles:

A =— bottom up construction; input: physical particles
| SU(3)xU(1)
T higgs = gauge singlet
gives HEFT amplitudes
scatte

decay angles
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What about (low-energy) SMEFT amplitudes?

use on-shell Higgsing
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construct amplitudes of unbroken theory & “Higgs” them to get massive amplitudes

Balkin Durieux Kitahara YS Weiss ‘21

massless & (impose full SU(3)xSU(2)xU(1) )

l

derive massive

EFT: new fields A #sqesenmmm

EWSB m ~ v

(contact term part only)

[another way: start with most general amplitudes and require perturbative unitarity] Durieux Kitahara YS Weiss ‘19
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results: HEFT, SMEFT
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HEFT in ventory (observables; many more results on operators, anomalous dim’s via on-shell)

® all HEFT 3-points (+matching to SMEFT) Durieux Kitahara YS Weiss ‘19
® [all generic 3-points for spins up to 3

® all generic 4-pt SCTs for spins 0, 1/2, 1 ] Durieux Kitahara Machado YS Weiss’20

® HEFT 4-points: hggg, Zggqg, ffVh, WWhh Shadmi et al ’18, Durieux et al ’19, Balkin et al "21

+ some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh

o 5V (4W+Z etc) De Angelis ‘21
® Higgs, top 4pts in terms of momenta-+polarizations Chang et al 22, ‘23
® all HEFT 4pts up to d=8 s Liu Ma YS Waterbury 23
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Full set of EFT contact terms featuring E? growth: (mostly dim-6 operators)

E? contact terms

MWVIWVhR) CO0(12)[12], Ot (12)2 (12) = [12] or (12)

M(ZZhh) Counn(12)[12], C5 7, (12)?
M(gghh) Clann(12)°
M(~y~hh) Cnn(12)7

M

(’s: Wilson coefficients

M(ffhh) Cinn(12) most suppressed by A?
M(fchh) Crwnl13](28) , Crwn(13)[23] , C7i,(13)(23) (amp“tude dim_|ess)
f th Clrzn13](23) , Cf +Zoh<13>[23] Ciizn(13)(23)
<23>

MUfeffof)

Ma Liu YS Waterbury 2301.11349
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Full set of EFT contact terms featuring E? growth: (mostly dim-6 operators)

E? contact terms
M(WWhh) Cown (12)[12], Ciiyp,(12)° (12) = [12] or (12)
ZZhh C%()Zhh<12>[12]7 Cél:Zj:hh(lz)2

(gghh)

R ——
/\/l(thh) [ )

Mk

(’s: Wilson coefficients

M) [ _ : B most suppressed by A?
- MUEfWR) O, i1 (amplitude dim-less)
l

Ma Liu YS Waterbury 2301.11349
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similarly: full set of d < 8 HEFT amplitudes
(E°, E* growth)

see backup slides

some of these already derived in:

YS Weiss ‘18
Durieux Kitahara YS Weiss '19 (which also has all 3 points)
Balkin Durieux Kitahara YS Weiss '21
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What about SMEFT amplitudes?

use on-shell Higgsing

Shadmi PASCOS 23, UCI June 23



 Auplitade | Coutact term | Warsan basis operator | Cocfficient

A(H{HSHEH' H™H")

5127

(s13 = 525)T5" | Oup/2— Oyo/4

- - A | (2% | (Own£i0,0/2 | oy

start with massless SU(2)xU(1) symm amplitudes A2

AW AL | (12207 | (O £ 02| iy

AP | (027 | (Ono04)2 | cbun

CAGEEE) | DT | 0w | i

. . . QI | DATEE | Ow/r | cypunn

and Higgs these to get massive amplitudes A P H HE Y

I I (A I M B P

Al B | Q20| Om2 | eubn

AGPH) | s | Om2 |y

AGPHE) | (0| Omwl? | cudyy

Aty | et (0 + 0

A | Tt (O - O

AQ@QHiHY) | TR | (304, +0y) 8| ool

A(Q:, Q¥ HeHY) [142)T ;"o (Oyp — Oh)/8

[13][23]5] —i0.p/(2v2)

A(Q2,d" BT H) [13](23]674"

[13][23]e;;08

: : [13]23] (o)

for completeness provide full mapping QW) | 230

: [13][23] (o) ixek !

of 4-pt d < 6 EFT amplitudes A F )| 13RS )

- [13][23)e;;(A1)?

to Warsaw basis (13)(23)(31)F
: (12)(23)(31) f47¢ erete

Ma Shu Xiao ‘19 @ 210

Table 2: Massless d = 6 SMEFT contact terms [34] and their relations to Warsaw basis
operators [3|. For each operator (or operator combination) O in the third column, ¢ O gen-

S S NS

erates the structure in the second column with the coefficient ¢ given in the fourth column.

eupanctipts denote charec comneatien - Ma Liu YS Waterbury 2301.11349



Massive d = 6 amplitudes SMEFT Wilson coefficients

M(WELWL_hh) — C%/)Whh<12>[12]

get SMEFT low-energy contact terms MWEWL D) = Ciyyynn(12)? Cuviyan, = 2y
M(ZrZphh) = Cyy,,(12)[12] CYumn = —2¢4 HH)?

Tt T 5 F+ 5 T+ Tt
M(Zizihh) CZZhh(lz) Z7zhh = CWlwwhHHr T SWCBBHH T CWSWCBWHH

here:uptod < 6

Tt
CW)CBWHH

'
f+f, WL
(f—f-|-WL

MI

M(fEfvZLh) =
M(fLfeZih) =
M(fifi%:h) SWciiI:J[:/H + CWC:\IE:E:BFH
M(qiqrgih) = C}it)‘ (13 (2 Cf;_L — C$icj§H/\/_

d=8: Goldberg Liu YS in progress

9 + —|— 0 + 9 + +_ -
UWHH > l/Lz/ zih = ~WCounH T Cownn

Table 3: The low-energy E? contact terms (left column) and their d = 6 coefficients in
the SMEFT (right column). ¢ g2 without a superscript is the renormalizable four-Higgs
coupling. The mapping for four fermion contact terms is trivial, so we do not include them
here.

Ma Liu YS Waterbury 2301.11349
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Massive amplitudes E? contact terms

MWW hh) Cownn(12)[12], Ciiyp, (12)7
M(ZZhh) Cypmn(12)(12], C77,,(12)°

.simple: each term: complex number (scattering angle; W/Z/h/t spin polarization direction)

' SMEFT relations or lack thereof reflected directly in coefficients of specific observables
* (obviously after adding in factorizable part of amplitude and squaring) |

good starting point for isolating specific contributions
) |n progress De Angells Durleux GrOJean YS

R s egp T o L S e e o (- Lo _posma

| (4),(#*“[12]V4>+ 7 (13](2 >>C+__+[14]<23>
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compare to standard approach: to derive SMEFT predictions:

here: directly get physical parameters, working with on-shell dof’s only

basis of operators in unbroken theory
turn on Higgs VEV —> Lagrangian in broken theory, SM couplings shift

derive Feynman rules of broken theory in some gauge
redefine parameters from physical masses, couplings

Shadmi

PASCOS 23, UCI

June 23



example: shifts of SM couplings from d=6 operators

WWHh coupling shift from 2H —2H" d=6 contact term

6-point (H'H)*’WW amplitude with this contact term

taking three Higgs momenta to be soft

Shadmi PASCOS 23, UCI June 23



to conclude:

o mature(ing) methods for on-shell derivations of low-energy EFT amplitudes:
O clear distinction between HEFT, SMEFT
o all HEFT 4-pts up to d=8; all SMEFT 4-pts up to d=6

o directly in terms of physical particles, couplings
O amplitudes are what we need to compare with experiment

O start to develop an understanding of field space — Higgs mechanism
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Backup
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2 10 2:

[]<> Ry f
CETTN P(F’F)

SCT scattering angle

scattering angle
and
decay angles
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HEFT, naive SMEFT dim’s

417 WW-2zZ
0000 : 12][34](12)(34), [13][24](13)(24) + (3 < 4)
+ 400 : 12]2[34](34); PF
L0+0:  {[12][34][13](24), [14][23][13](24)} + (3 > 4); (1 ¢ 2); PF
00 + + : 34]2[12](12); PF
+—00: 13][14](23)(24); PF
+0—0: {112]]14/(23)(34) + (3 <> 4),(1 <> 2)}; PF
00 + — : 13][23](14)(24) + (3 < 4)
TRERNTY ([12]2[34]2, [13]2[24]? (3H4)} PF
T 12]2(34)*
—+ — 14]2(23)2 + (3 < 4) PF

~ o

# of indep
structures/couplings

~ o ~» o ~» o ~» o ~» o

~ o

PF = parity flip
angle <—> square

~ o

~ o

4
6
0
6
6
6
6
3
3
8

coO OGO OO OO OO OO 0o 2w 0o 0o
— — — — — — N O
O S IS S IS S S SR SRS

|
N \O R NGO EERTE U TE NS I N RO O NI\

(
(
(
(
(
(
(
(
(
(

=z !
O,

At order E® several new vvvv SCTs become independent in the (+000), (+ + -+0),
(+ 4+ —0) helicity categories.

Ma Liu YS Waterbury 2301.11349

do new SCTs appear at higher dim’s and where
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example: higgs + 3 gluons: YS Weiss ‘18

12][13][23
M (h; g°F (91) ¢ (92) g°F (p3)) = %
im4gscg99+ﬂ_|_ci( + € )_I_CLS
S19513593 A2 = A6 $12523 T S$13S23 T S12513 AS $12513593
factorizable + EFT (most general) . - (512 — 513) (512 — 523) (513 — 323)}

full kKinematic behavior of amplitude

going to dim-13: academic exercise: here see that nothing important beyond dim-7/

by-product: counting & classitying basis of EFT operators

Shadmi PASCOS 23, UCI June 23



