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Old Question: Vacuum Transitions 

Transitions among de Sitter, Minkowski and anti de Sitter 
spacetimes?



Motivation

• String landscape

• Vacuum transitions: beginning and end of our 

universe?

• Theoretical ‘laboratory’ to study quantum 

aspects of gravity



Early History

• Coleman de Luccia (1980)

• Witten (1981)

• Vilenkin + Hartle-Hawking (1982-3)

• Brown-Teitelboim (1987)

• Farhi-Guth-Guven (1990)

• Fischler-Morgan-Polchinski (1990)
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Wave functions of the universe

space is then given in each case by

PHH(Nothing ! dS) = k HH (HdS)k
2
/ e

⇡

GH
2
dS = e+SdS (2.2) {eq:PHH}

PT(Nothing ! dS) = k T (HdS)k
2
/ e

� ⇡

GH2
dS = e�SdS (2.3) {eq:PT}

In the last relation on each line we have noted the curious fact that these solutions of the WdW
equation yield expressions which in the HH case is proportional to the positive exponential of the
horizon entropy SdS and hence to the dimension of the Hilbert space that can be built on the
horizon while in the tunneling case it is inversely proportional to the dimension of the Hilbert
space.

Note that the probability amplitude can be seen as a tunneling e↵ect considering the scale factor
a(t) as a field with the ’wrong’ kinetic term and a scalar potential V (a) = �3a+⇤a3. The tunneling
would be from ’nothing’ which would correspond to a = 0 to a 6= 0 which is the turning point of a
potential barrier of �V (a).

2.2 Bubble of Nothing

Review Witten’s BON

3 Down and Up-Tunneling Transitions

3.1 Hamiltonian approach to vacuum transitions

Let us start reviewing vacuum transitions from the Hamiltonian approach as initiated by Fischler,
Morgan and Polchinski (FMP) [11]. Starting with the spherically symmetric metric

ds2 = �N2
t dt2 + L(r, t)2(dr + Nrdt)2 + R(r, t)2d⌦2

2 (3.1)

in order to address the vacuum transition problem FMP considered the bulk-brane system with
the brane (or wall) at r = r̂ separating two regions with di↵erent cosmological constants ⇤± and
the following action:

S = Sbulk + Sbrane +

Z
d4x

p
�g (⇤+⇥(r � r̂) + ⇤�⇥(r̂ � r)) (3.2)

with standard Einstein-Hilbert Sbulk and brane action Sbrane respectively and with ⇥ the step
function.

FMP reduced the vacuum transition problem to solving for the quantum mechanics of the brane
(assumed spherically symmetric) with a wave function  (R̂) which solves the Wheeler deWitt
equation. In the leading WKB approximation this implies solving the momentum and Hamiltonian
constraints while satisfying the matching conditions at the brane.

R0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥



2
R̂ , (3.3) {eq:JunctionConditions}

3

Mini-superspace

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)
entropy

where VA = V (�A). Hence we have

B

2
= �12⇡2

Z
⌧max

0

d⌧


⇢ � 1

3
V ⇢3

�
+ 12⇡2

Z
⌧max

0

d⌧


⇢ � 1

3
VA⇢3

�

= �12⇡2

Z
⌧̄��⌧

0

d⌧


⇢ � 1

3
VB⇢3

�
+ 2⇡2⇢̄3T + 12⇡2

Z
⌧̄��⌧

0

d⌧


⇢ � 1

3
VA⇢3

�
(4.4)

In the second line we have assumed that beyond the point ⌧̄+�⌧ , V ' VA so that the contribution
from ⌧̄ + �⌧ to ⌧max in the first term of the first line cancels against the second term. Also T in
the middle term is defined by

⇢̄3T = 2

Z
⌧̄+�⌧

⌧̄��⌧

d⌧⇢3(V (�(⌧) � VA). (4.5)

In the second line of Eq. (4.4) we have taken the path in ⌧ such that for 0 < ⌧  ⌧̄ � �⌧ , � is
held fixed at �B while in the interval ⌧̄ + �⌧  ⌧ < ⌧max, � = �A. So in the first and third terms
in Eq. (4.4) we can replace the integral over d⌧ = d⌧

d⇢
d⇢ using the Euclidean Eq. (4.1) with �

fixed7. This gives d⌧

d⇢
= ±1/

p
1 � VB,A⇢2 in the first and third terms8 so these integrations can

be done giving us (in the thin wall limit �⌧ ! 0),

B

2
= �12⇡2

"
±
�
1 � 1

3
VA⇢̄2

�3/2 � 1

VA

⌥
�
1 � 1

3
VB ⇢̄2

�3/2 � 1

VB

#
+ 2⇡2⇢̄3T. (4.6)

⇢̄ is then determined by extremising B. Upon substituting this value into the above one then
gets the usual expressions which we will quote later after re-deriving the above without invoking
Euclidean arguments with their corresponding interpretational issues.

4.2 Vacuum transitions in mini-superspace

An instructive exercise, that helps understanding the formalism outlined in Sec. 2 and shows
the di↵erences between the Lorentzian and Euclidean appproaches, consists in studying vacuum
transitions in a mini-superspace setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario [20–23]. For a recent discussion see for
instance [34–36]. The metric is

ds2 = �N2(t)dt2 + a2(t)(dr2 + sin2 rd⌦2

2) . (4.7)

The action (setting Mp = 1/
p

8⇡G = 1) is given by the sum S = Sg + Sm, where

Sg = 2⇡2

Z
1

0

dt
�
�N�13aȧ2 + 3kaN

�
, (4.8)

Sm = 2⇡2

Z
1

0

dt

✓
N�1

1

2
a3�̇2 � Na3V (�)

◆
. (4.9)

Here k = ±1, 0 depending on whether the three-spatial slice is positively (negatively) curved
or flat. Of course in the open k = 0, �1 cases the factor 2⇡2 would have to be replaced by an

7Although not explicitly stated this seems to have been assumed also in [33].
8In [33] only the positive sign is kept here.
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it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ

1

2

3

4

V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height

– 2 –

Two types of vacuum transitions

1. Transition between two minima of scalar potential

2. No scalar field: M1 to M1+Wall+M2
Brown-Teitelboim 87

Coleman-De Luccia 1980

Both realised in string landscape 
Populating the String Landscape.

Motivations

• How is it populated? 

Eternal inflation is not enough.

• Starting from a given de Sitter, is it possible 

 to up-tunnel?

V = e− nχ
Mχ V0(ϕ) + V1(χ)

V0(ϕ) = μ4
ϕ ( ϕ2

M2
ϕ

− 1)
2

V1(χ) = μ4
χ [−e−2χ/Mχ + ae−χ/Mχ + be−3χ/Mχ]

V

χ

ϕ

[Aguirre, Johnsons, Larfors, ’09, ’10]

Approximate 
picture



WKB in Field Theory
rate. In the case corresponding to the right panel of Fig. 1 we are able to be more precise; as
the potential asymptotically goes to zero, we can define the S-matrix for such a system and we
will show how to compute the decay rate exactly from the interpretation of a resonance as a
complex pole of the S-matrix.

Consider the potential in Fig. 1. We need to solve the flat space version of Eq. (2.4). Now
we have a global constraint - classically it is a constraint on the Hamiltonian (rather than the
density),

H =

Z

X

"
⇡2

�

2
+

1

2
r2

x� + V (�)

#
= E , (3.1) {eq:Hphi}

and hence the Schrödinger equation

Z

X


�~2

2

�2

��(x)2
+

1

2
r2

x� + V (�)

�
 [�] = E [�]. (3.2)

Using G�� = 1 in Eq. (2.7) and Eq. (2.8)

Z

X
f [�] =

Z

X


1

2
r2

x� + V (�)

�
� E ⌘ U [�] � E, (3.3) {eq:Uphi}

so Eq. (2.11) becomes

S0 [�] = �2

Z s

ds0C�1(s) [U [�s0 ] � E] . (3.4)

Note that in order to make these expressions well-defined we choose the field configuration
� such that at large |x| it goes asymptotically to �IV rapidly enough to make all the integrals
above finite. Alternatively as we will do in the next section, we can work in a compact space
such as a three-sphere.

At this point we can write, in general

k =
p

2 [E � U [�(⌧)]] , for E > U (�(⌧)) , (3.5) {eq:ktau}

 =
p

2 [U [�(⌧)] � E] , for E < U(�(⌧)) . (3.6) {eq:kappatau}

The leading order wave-functionals in the classically non-allowed and allowed regions respectively
are determined by the WKB matching conditions. Consider the case in which the classically
forbiden region is located at ⌧ > ⌧0, then the wave functionals in the classically allowed and in
the classically forbidden regions are respectively

 [�] =
2Ap

k
cos

✓Z ⌧0

⌧
k(�(⌧))d⌧ � ⇡

4

◆
� Bp

k
sin

✓Z ⌧0

⌧
k(�(⌧))d⌧ � ⇡

4

◆
,

 [�] =
Ap


exp

✓
�
Z ⌧

⌧0

(�(⌧))d⌧

◆
+

Bp


exp

✓Z ⌧

⌧0

(�(⌧))d⌧

◆
, (3.7) {eq:WKB1}

If the classically forbidden region is located at ⌧ < ⌧0, the wave-functionals are

 [�] =
Ap


exp

✓
�
Z ⌧

⌧0

(�(⌧))d⌧

◆
+

Bp


exp

✓Z ⌧

⌧0

(�(⌧))d⌧

◆
,

 [�] =
2Ap

k
cos

✓Z ⌧0

⌧
k(�(⌧))d⌧ � ⇡

4

◆
� Bp

k
sin

✓Z ⌧0

⌧
k(�(⌧))d⌧ � ⇡

4

◆
, (3.8) {eq:WKB2}
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where

� = exp

✓Z c

b
d⌧

◆
. (3.14)

We find that

A4 = ei⇡/4
A2

2�
(sin ✓ � 4i cos ✓�2) , B4 = ei⇡/4

A2

2�
(�i sin ✓ + 4 cos ✓�2) , (3.15) {eq:A4B4}

so that the wave-functional takes the form

 4[�] =
A4p

k
exp

✓
i

Z ⌧

c
kd⌧

◆
+

B4p
k

exp

✓
�i

Z ⌧

c
kd⌧

◆
. (3.16)

Using Eq. (3.7) we find that

A5 =
A4ei! + B4e�i!

2
, B5 = i(A4e

i! � B4e
�i!) , (3.17)

where

! =

Z d

c
kd⌧ , (3.18)

so that

 5[�] =
A5p


exp

✓
�
Z ⌧

d
d⌧

◆
+

B5p


exp

✓Z ⌧

d
d⌧

◆
. (3.19)

Of course, we need to require that the rising component of the wave-functional is absent in
region 5, namely that B5 = 0. This implies

� 4�2
�
1 + ie2i!

�
cos ✓ + i

�
1 � ie2i!

�
sin ✓ = 0 , (3.20)

which is satisfied if

cos ✓ = 0 and ! = �⇡

4
+ n⇡ (n 2 Z) , or (3.21)

sin ✓ = 0 and ! =
⇡

4
+ n⇡ (n 2 Z) . (3.22)

However, note that if we require that sin ✓ = 0, the coe�cients A4 and B4 in Eq. (3.15) would
be enhanced with respect to A2 and B2 by a factor / �. If the initial condition of the process is
a homogeneous configuration with the field in the false vacuum, we expect that the coe�cients
A4 and B4 are suppressed with respect to A2 and B2, therefore we need to impose cos ✓ = 0.

Note that the leading order of the transmission coe�cient T 2 = | 4[�]|2
| 2[�]|2 is given by the factor

1/�2 and gives a measure of the decay rate, despite in this case it is not possible to formally
define it in terms of the S-matrix, unlike the case discussed in the next section. At leading order
then

� ⇠ T 2 ⇠ 1

�2
/ exp

✓
�2

Z c

b
d⌧

◆
, (3.23) {eq:DecayRateWKB}

which is equivalent to the CDL result.
It is particularly interesting to notice that the result in Eq. (3.23) is equivalent to the

Euclidean action evaluated on the bounce solution, upon subtraction of the background action.
Let us make this statement more explicit: between the two turning points b and c, the potential
energy is larger than the total energy E of the system. As the total energy is given by the

12

In the above we’ve only kept the pre-factor corresponding to longitudinal fluctuations of the
field i.e. corresponding to the first term in (2.28). The second term coming from transverse
fluctuations is not explicitly written since it plays no role in the further discussion.

Now recall that the classically allowed and forbidden regions are defined in terms of the
potential U [�], that depends on the specific path in the field space chosen to perform the
integration. Hence they cannot be visualized in the potentials of Fig. 1. However, we can expect
that for a generic path in field space, it would take a form that is similar to that shown in Fig. 1,
with a finite barrier in the middle and infinite barriers on both sides for the case of the left panel
of Fig. 1, and on the left side only for the case of the right panel of Fig. 1, see Fig. 2. At this
point we will distinguish between the two cases.

U[�(�)]

x
�(�)

E

1 2 3 4 5

a b c d

1 2 3 4

x

U[�(�)]

�(�)a b c

E

Figure 2: Potential.
fig:PotentialUFlatSpace

3.1 WKB for decay in a two-vacua potential

In the case of the left panel of Fig. 2, we can identify five di↵erent regions, three of which are
classically disallowed (1, 3 and 5) while two are classically allowed (2 and 4). We impose that
in region 1 the decaying component of the wave-functional is absent, hence B1 = 0 and

 1[�] =
A1p


exp

✓
�
Z a

⌧
d⌧

◆
. (3.9)

Using Eq. (3.8) we can easily find that

A2 =
⇣
cos ✓e�i⇡/4 + sin ✓ei⇡/4

⌘
A1 , B2 =

⇣
cos ✓ei⇡/4 + sin ✓e�i⇡/4

⌘
A1 , (3.10)

where

✓ =

Z b

a
kd⌧ , (3.11)

so that

 2[�] =
A2p

k
exp

✓
i

Z ⌧

b
kd⌧

◆
+

B2p
k

exp

✓
�i

Z ⌧

b
kd⌧

◆
. (3.12)

The connection between the regions 2 and 4 can be easily found by using the following connection
formula, see [20] ✓

A4

B4

◆
=

1

2

✓
1

2� + 2� i
�

1

2� � 2�
�

�i
�

1

2� � 2�
�

1

2� + 2�

◆✓
A2

B2

◆
, (3.13)
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where

� = exp

✓Z c

b
d⌧

◆
. (3.14)

We find that

A4 = ei⇡/4
A2

2�
(sin ✓ � 4i cos ✓�2) , B4 = ei⇡/4

A2

2�
(�i sin ✓ + 4 cos ✓�2) , (3.15) {eq:A4B4}

so that the wave-functional takes the form

 4[�] =
A4p

k
exp

✓
i

Z ⌧

c
kd⌧

◆
+

B4p
k

exp

✓
�i

Z ⌧

c
kd⌧

◆
. (3.16)

Using Eq. (3.7) we find that

A5 =
A4ei! + B4e�i!

2
, B5 = i(A4e

i! � B4e
�i!) , (3.17)

where

! =

Z d

c
kd⌧ , (3.18)

so that

 5[�] =
A5p


exp

✓
�
Z ⌧

d
d⌧

◆
+

B5p


exp

✓Z ⌧

d
d⌧

◆
. (3.19)

Of course, we need to require that the rising component of the wave-functional is absent in
region 5, namely that B5 = 0. This implies

� 4�2
�
1 + ie2i!

�
cos ✓ + i

�
1 � ie2i!

�
sin ✓ = 0 , (3.20)

which is satisfied if

cos ✓ = 0 and ! = �⇡

4
+ n⇡ (n 2 Z) , or (3.21)

sin ✓ = 0 and ! =
⇡

4
+ n⇡ (n 2 Z) . (3.22)

However, note that if we require that sin ✓ = 0, the coe�cients A4 and B4 in Eq. (3.15) would
be enhanced with respect to A2 and B2 by a factor / �. If the initial condition of the process is
a homogeneous configuration with the field in the false vacuum, we expect that the coe�cients
A4 and B4 are suppressed with respect to A2 and B2, therefore we need to impose cos ✓ = 0.

Note that the leading order of the transmission coe�cient T 2 = | 4[�]|2
| 2[�]|2 is given by the factor

1/�2 and gives a measure of the decay rate, despite in this case it is not possible to formally
define it in terms of the S-matrix, unlike the case discussed in the next section. At leading order
then

� ⇠ T 2 ⇠ 1

�2
/ exp

✓
�2

Z c

b
d⌧

◆
, (3.23) {eq:DecayRateWKB}

which is equivalent to the CDL result.
It is particularly interesting to notice that the result in Eq. (3.23) is equivalent to the

Euclidean action evaluated on the bounce solution, upon subtraction of the background action.
Let us make this statement more explicit: between the two turning points b and c, the potential
energy is larger than the total energy E of the system. As the total energy is given by the

12

Decay rate

Schrödinger 
equation

Quantum Field Theory

Scalar field theory V = ∫ d4x (− 1
2 ∂μφ∂μφ − V(φ)) infinite dimensional space 

of field configurations

The corresponding potential energy is U[φ(x)] = ∫ d3x ( 1
2 (∇φ)2 + V(φ))

homogeneous tunnelling would correspond to go beyond an infinitely high barrier

tunnelling is possible only locally

τ

x

Infinite many ways of intepolating

bounce minimizes the integral of U

U[φ(x)]

x

φB

φB

φB

[Callan, Coleman, ’77]
[Coleman, ’77]

Infinite volume: Transition local

Bubble

U[𝜙]
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tvφ φ φ
φ

V

topfv

Fig. 12.1. A typical potential with a false vacuum.

To go from the false vacuum through a series of spatially homogeneous configura-
tions would require traversing an infinite potential energy barrier. The tunneling
amplitude for this vanishes. Instead, the false vacuum decays by a tunneling pro-
cess that takes a spatially homogeneous state to one with a region of approximate
true vacuum—a bubble—embedded in a false vacuum background. Because the
bubble can be nucleated anywhere, the decay rate is proportional to the volume
of space, and thus formally infinite. The finite physically measurable quantity
that we need is the bubble nucleation rate per unit volume, Γ/V.

One can envision many paths through the space of field configurations that
connect the pure false vacuum to a configuration with a bubble. Two of these are
illustrated in Fig. 12.2. Each path specifies a series of field configurations that
define a slice through the potential energy barrier. A plot of U [φ(x)] along the
path would be similar to the one-dimensional potential energy barrier shown in
Fig. 9.3. The end point of the path, corresponding to the field configuration at
the time that the bubble nucleates, has the same potential energy as the initial,
pure false vacuum, configuration; quantum tunneling conserves energy.

As described in Chap. 9, the tunneling amplitude is dominated by the path
that minimizes the barrier penetration integral B. This path can be found by
finding the bounce solution to the Euclidean equation of motion [226], which in
the present case is the field equation

0 =
d2φ

dτ2
+ ∇2φ− dV

dφ
(12.3)

that follows from the Euclidean action1

1 Because almost all actions in this chapter will be Euclidean, I will generally omit an explicit
subscript E on the action.

              

       

12.1 Bounces in a scalar field theory 259

−V
fv φ tv

φ
φ

Fig. 12.4. The upside-down potential used in the overshoot–undershoot argu-
ment. The field begins, at s = 0, near the true vacuum peak and must finally
come to rest at φfv.

damping term, and so the particle will never have sufficient energy to reach
φfv; i.e., it undershoots. Now suppose instead that φ0 is taken to differ only
infinitesimally from φtv. It will then start to move very slowly, so that by the
time it has moved appreciably from its initial position the damping force will
have almost died away and the particle’s energy will be essentially conserved. It
will then have nonzero kinetic energy when it reaches φfv and so will continue on,
never to return; it overshoots. By continuity, there must be a range of φ0 near
the top of the potential that lead to overshoots and another range, lower down,
giving undershoots. The boundary between these two ranges gives the desired φ0

that determines the bounce. (While this argument demonstrates the existence
of a bounce, it does not prove the uniqueness of the bounce. It is not hard to
find potentials that have several ranges of overshoot and undershoot, and thus
several distinct bounce solutions.)

Assuming O(4) symmetry, the tunneling exponent from the bounce can be
written as

B = 2π2

∫ ∞

0
ds s3

[
1
2
(φ′)2 + V (φ)− Vfv

]
, (12.17)

where the factor of 2π2 is from the four-dimensional angular integration. We
can estimate the magnitude of B by scaling arguments. Let us assume that the
theory has a single characteristic mass scale m and that the scalar field potential
can be written as

V (φ) = g2v4Ṽ (φ/v) + Vfv , (12.18)

where v = m/g and the dimensionless parameters in Ṽ are all of order unity. (In
particular, this implies that |φtv−φfv| is of order v.) We can then define rescaled
variables u = ms and f = φ/v and write

              

       

Coleman et al. (Field theory and Gravity)

O(4) Instanton (bounce)

The solution to these equations correspond to the deformation of a and � from a point

in the false vacuum VA to the true vacuum, VB. Valid solutions to this equations are

subject to the boundary conditions imposed by the turning points ⇡a = ⇡� = 0, which

translate into , daA,B/ds = d�A,B/ds = 0. These determine then the points aA,B and �A,B

where the tunneling occurs. Note that these points are not necessarily at the true and

false vacuum as in general the boundary conditions are not satisfied there. Their precise

location depends on the the details of the potential and it might be the case that there

are no possible solutions [51]. This can be seen for example by expanding at the top of

the potential. Doing so it is possible to approximate a = sinHt. Now let us consider

homogeneus perturbations of the field ��, so we get,

��00 + 3H tan Hu��0 � V 00�� = 0 (4.22)

This equation can be solved by writing �� =
P

n
��n cos(Hnu). Reeplacing the ansatz into

the equation we get that solutions only exist if V 00 + H2n(n + 3 tan(Hnu)2) = 0. SC: It’s

still not clear to me how to interpret this. In the case of CDL one gets V 00+H2n(n+3) = 0

so it seems strange now that the condition depends on u

5 Open or Closed Universe?

As we have seen in previous sections, even though we used a very di↵erent approach to

compute the tunneling amplitude from Coleman de Luccia, we found the same expression

for the decay rate at least in the thin wall approximation. However since our approach is

Lorentzian we did not perform any analytic continuation and starting from a closed universe

we found that the spacetime geometry after the transition is also of a closed universe. This

is in contrast to the CDL case in which a series of analytic continuations lead to an open

universe after bubble nucleation. In this section we will revisit this important di↵erence.

In the case of CDL, the starting point is a Euclidean instanton that we briefly review

next for completeness.

5.1 CDL Geometry

Given two vacua �F and �T such that V (�F ) > V (�T ) � 0, according to [3] to calculate

the scalar field that interpolates between the two minima first we need to consider the

Euclidean solution that extremises the action in order to derive the remaining geometry

inside and outside the bubble. This was done in several steps:

• In field theory, the Euclidean bounce solution is O(4) invariant in such a way that

the scalar field depends on the Euclidean distance ⇠2 = |x|2 + ⌧2. Analytic contin-

uation changes this to a O(3, 1) and ⇠2 ! |x|2 � t2. Once gravity is included the

corresponding line element is assumed to share that symmetry.

• Starting with the O(4) symmetric Euclidean de Sitter metric,

ds2 = d⇠2 + ⇢2(⇠)(d 2 + sin2  d⌦2
2) (5.1)

– 22 –

The solution to these equations correspond to the deformation of a and � from a point

in the false vacuum VA to the true vacuum, VB. Valid solutions to this equations are

subject to the boundary conditions imposed by the turning points ⇡a = ⇡� = 0, which

translate into , daA,B/ds = d�A,B/ds = 0. These determine then the points aA,B and �A,B

where the tunneling occurs. Note that these points are not necessarily at the true and

false vacuum as in general the boundary conditions are not satisfied there. Their precise

location depends on the the details of the potential and it might be the case that there

are no possible solutions [51]. This can be seen for example by expanding at the top of

the potential. Doing so it is possible to approximate a = sinHt. Now let us consider

homogeneus perturbations of the field ��, so we get,

��00 + 3H tan Hu��0 � V 00�� = 0 (4.22)

This equation can be solved by writing �� =
P

n
��n cos(Hnu). Reeplacing the ansatz into

the equation we get that solutions only exist if V 00 + H2n(n + 3 tan(Hnu)2) = 0. SC: It’s

still not clear to me how to interpret this. In the case of CDL one gets V 00+H2n(n+3) = 0

so it seems strange now that the condition depends on u

5 Open or Closed Universe?

As we have seen in previous sections, even though we used a very di↵erent approach to

compute the tunneling amplitude from Coleman de Luccia, we found the same expression

for the decay rate at least in the thin wall approximation. However since our approach is

Lorentzian we did not perform any analytic continuation and starting from a closed universe

we found that the spacetime geometry after the transition is also of a closed universe. This

is in contrast to the CDL case in which a series of analytic continuations lead to an open

universe after bubble nucleation. In this section we will revisit this important di↵erence.

In the case of CDL, the starting point is a Euclidean instanton that we briefly review

next for completeness.

5.1 CDL Geometry

Given two vacua �F and �T such that V (�F ) > V (�T ) � 0, according to [3] to calculate

the scalar field that interpolates between the two minima first we need to consider the

Euclidean solution that extremises the action in order to derive the remaining geometry

inside and outside the bubble. This was done in several steps:

• In field theory, the Euclidean bounce solution is O(4) invariant in such a way that

the scalar field depends on the Euclidean distance ⇠2 = |x|2 + ⌧2. Analytic contin-

uation changes this to a O(3, 1) and ⇠2 ! |x|2 � t2. Once gravity is included the

corresponding line element is assumed to share that symmetry.

• Starting with the O(4) symmetric Euclidean de Sitter metric,

ds2 = d⇠2 + ⇢2(⇠)(d 2 + sin2  d⌦2
2) (5.1)

– 22 –

Analytic continuation O(3,1)

Open FLRW geometry!

12.4 Tunneling at finite temperature 267

of approximate true vacuum. However, this is not the most natural description
from the point of view of an interior observer. Inside the light cone of the origin
we can define

t̃ =
√

t2 − r2 ,

r̃ =
r√

t2 − r2
. (12.47)

Because φM depends only on t̃, these coordinates give a description in which the
bubble interior (or at least the part within the light cone of the origin) is a time-
dependent but spatially homogeneous region of infinite spatial extent. There is
no privileged point that can be uniquely defined to be the “center” of the bubble.
In terms of the new coordinates, the Minkowskian metric takes the form

ds2 = dt̃ 2 − t̃ 2

[
dr̃2

1 + r̃2
+ r̃2(dθ2 + sin2 θ dϕ2)

]

≡ dt̃ 2 − t̃ 2 dΩ2
T . (12.48)

This describes an open Friedmann–Robertson–Walker universe with infinite neg-
atively curved spacelike surfaces of constant time. These surfaces are spacelike
hyperboloids (i.e., hyperboloids with timelike normals) and dΩ2

T is the metric on
the unit spacelike hyperboloid.

This picture of an almost empty bubble interior is only valid to the extent that
collisions with other bubbles can be ignored. One might expect that the continued
nucleation and growth of bubbles would eventually cause them to coalesce, so
that the bubble walls would disappear and the latent heat would be released. This
is indeed what happens in cosmological first-order phase transitions that proceed
rapidly with little supercooling. However, as will be discussed in Sec. 12.7, bubble
nucleation in a quasi-de Sitter background can lead to a very different type of
scenario [126].

12.4 Tunneling at finite temperature
Let us now consider the effects of a nonzero temperature T = 1/β. Specifically,
let us assume that our system is initially in a quasi-equilibrium, with a thermal
distribution of the states built upon the false vacuum, but with states built upon
the true vacuum being unpopulated.

The picture of bubble nucleation outlined in the previous sections must be
modified in several ways [274, 275]. First, it is clear that in finding the bounce we
must use the finite temperature effective potential Veff(φ, T ), which was discussed
in Sec. 7.2, instead of the zero-temperature scalar field potential. Otherwise, we
would find a nonzero rate for nucleating bubbles of the low-temperature phase
even above the critical temperature of a first-order transition. To simplify the

              

       



Including Gravity

In field theory there is a similar process, described by Colemann and De Luccia (CDL)

[1], of decay of false vacuum to true vacuum. However there is a very important di↵erence

between CDL and BT processes. The former is a field theory process which describes

tunneling between two minima of a potential and stops once the field reaches in its true

minimum. However the membrane nucleation will always be (may be) repeated for dS

(AdS) with the inside value of flux and CC now become a background configuration. In

this sense the BT process is more suitable for describing the string landscape.

The probability per unit volume per unit time for brane nucleation is given in terms

of B. In [2] one has a universal expression for B valid for any decay. The corresponding B

is given by

B = 2⇡2⇢3T + 12⇡2

(
1

⇤i

"
�i

✓
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3
⇢2
◆3/2

� 1

#
�

1

⇤o

"
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Here �o/i = ±1 is determined from

�o = Sign


✏

3
�

T 2

4

�
, �i = Sign


✏

3
+

T 2

4

�
, (2.3)

T is the tension of the bubble wall and ✏ is defined as

✏ = ⇤o � ⇤i. (2.4)

It is also obvious from (2.3) that

�i � �o. (2.5)

The choice of �o/i gives many possibilities of decay. As we will see later, the choices which

are relevant to us are

�o = ±1, �i = +1. (2.6)

Here ⇢ is the size of the bubble and is determined by extremizing B,

⇢ =

(
⇤o

3
+

1

T 2


✏

3
�

T 2

4

�2)�1/2

. (2.7)

From (2.7), we get the following condition


✏

3
�

T 2

4

�2
� �

T 2⇤o

3
. (2.8)

Thus if we start with de Sitter space for which ⇤o > 0, then this condition is automatically

satisfied. However for ⇤o < 0 which is the case of AdS space, this inequality has to be

satisfied in order to have a brane nucleation.

The outcomes of the BT brane nucleation process are:
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no way to limit these disconnected sums and including them will simply make the whole

formalism ambiguous. Hence we simply set the coe�cients of such additional contributions

to the wave function to zero as being physically meaningless. We are only interested in

wave functions that can be interpreted as transitions mediated by our wall/brane and that

means we just keep the connected terms. A better understanding of this situation would

be desirable.

4.2 Euclidean approaches

Let us now compare our results with the standard Euclidean approach for tunnelling,

starting from the original CDL and BT and then with the FGG approach for the Minkowski

to dS transition.

BT/CDL

The original treatments on vacuum transitions were done following the standard instanton

techniques which are formulated in Euclidean space. Both CDL and BT formalisms are

Euclidean. Up-tunnelling dS to dS transitions are forbidden in CDL but not in BT (and

also Lee-Weinberg [24]) but Minkowski to dS transitions are forbidden in both CDL and

BT. Let us investigate the di↵erence. CDL and BT give the following expression for the

transition probability: P = e
�|2IBT|, where

IBT(R̂) =
⇡

4G

" 
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(4.5)

This expression is extremised (so that the probability is maximised) at R̂ = Ro with the

latter given by Eq. (2.42). If we substitute this into Eq. (4.5) we get

IBT(R̂ = Ro) =
⇡

2G

"⇥
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )
⇤
Ro

4H2
OH

2
I

� 1

2

�
H

�2
I �H

�2
O

�
#
, (4.6)

which is exactly the same result as in Eq. (2.54), obtained using the Hamiltonian approach

for dS to dS transitions. When setting the initial Hubble parameter to zero, the transition

probability vanishes. As mentioned in the previous Subsection this result agrees with the

Hamiltonian approach in the absence of spacetimes disconnected to the wall. However,

this does not prevent up-transitions: the argument for this is that FMP and FGG, instead,

focused on another transition, i.e. Schwarzschild to dS and subsequently they took M ! 0.
18 The main di↵erence between the two approaches is that, taking the Minkowski limit in

the latter implies the vanishing of the term proportional to the black hole mass parameter;

thereby, the total action still remains finite, leading to a nontrivial transition probability.

Notice that away from the turning points our general expression (3.9) does not coincide

with the BT expression (4.5). However both equations are such that they reproduce the

same expression (4.6) upon minimisation and evaluation at the turning points. This is the

relevant comparison.

18Note that, in this case, the bulk action would have a term like 2GM✓(�R̂
0
+) ! 0 in the flat spacetime

limit.

– 33 –

Euclidean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :

Contents
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1 Introduction

� ⇠ e�B, B = S[instanton]� S[background] (1.1)

�up = (1.2)
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with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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Vacuum transitions
Gravity: Down and Up Tunneling

Bubble nucleation

Tension: k

FV: HO

TV: HI

TV: HI

FV: HO

Tension: k

𝜙

𝑈(𝜙)

𝜙1 𝜙2

𝑈1

𝑈2

turning point

Figure 1: The potential of the scalar field. False and true vacua are located respectively at

�1 and �2.

Also [16] studied the e↵ect of non-minimal coupling to gravity. More recently, tunneling in

Jordan-Brans-Dickie theory was studied in [17].

The paper is organized as follows. In section 2 we briefly review the formalism of vacuum

decay in flat spacetime. In section 3 we present our analysis of vacuum decay in f(R) theory

which is used in section 4 for the thin wall limit. Section 5 is devoted to f(R) = R+ ↵R
n as

an example of our setup. In section 6 we reformulate the equivalent analysis in the Einstein

frame and finally we conclude in section 7.

2 Vacuum decay in flat spacetime

Here we briefly review the vacuum decay in flat spacetime. For an extensive review see [18]

and [19]. Consider the canonical scalar field

Lm = �
1

2
(@µ�)

2
� U(�) , (2)

where the potential U(�) has two unequal minima as shown in Fig. 1. We denote the

field values at the false and true vacuum respectively by �1 and �2 and the corresponding

potential values by U1 and U2. Consider the situation where the field value is initially at

�1 in all space. As mentioned above, there is a nonzero probability at every point that the

field jumps to the turning point quantum mechanically. This is allowed as tunneling respects

energy conservation.

The conventional approach to compute the probability is to find the wave function of the

system by solving the time-independent Schrodinger equation. The probability amplitude of

tunneling is proportional to the ratio of the wave functions at the turning point and the false

vacuum. For a field theory, the configuration space is infinite dimensional and we must solve

for a wave functional. The wave functional can be found via WKB approximation under the

potential barrier. However, the WKB equation is not easily solved for a multidimensional

system even at zeroth order. The idea due to [20] is that the wave functional is maximized

3

Lee+ Weinberg



Euclidean CDL

• It reproduces the right decay rate 𝜞=e-B as WKB and 
direct extension to field theory and gravity

• After bubble materialisation: Analytic continuation 
from Euclidean to Lorentzian. Implies open universe  
but just a “guess’’ (O(4) symmetry)

• Minkowski to de Sitter: (creating a universe in the 
lab), singular instanton?
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Hamiltonian Approach

not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where @M is a time-like boundary, K is the extrinsic curvature and h is the metric induced

on the boundary. SK is the Gibbons-Hawking boundary term that needs to be added to

SEH in order to recover the correct field equation of motion when applying the variational

principle. In the above metric the bulk Einstein-Hilbert action becomes5

SEH =
1

2G

Z
drdt


2

Nt

(NrLR)0(Ṙ�NrR
0)� 2

Nt

@t(LR)(Ṙ�NrR
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2
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(NtR)0R0 +

Nt

L
(L2 �R

02) +
L
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(Ṙ�NrR
0)2

�
. (2.3)

The canonically conjugate variables to L, R and the Hamiltonian and momentum of the

gravity theory are

⇡L =
NrR

0 � Ṙ

GNt

R, ⇡R =
(NrLR)0 � @t(LR)

GNt

, (2.4)
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GL⇡
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2R2
� G

R
⇡L⇡R +
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2RR
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02
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, (2.5)

Pg = R
0
⇡R � L⇡

0

L . (2.6)

We assume that the spherical brane is located at r = r̂. The induced metric6 can be written

as

hij = gµ⌫
@x

µ

@�i

@x
⌫

@�j
, h

00
= �N

2
t + L

2(Nr + ˙̂r)2 , (2.7)

and then the determinant takes the simple form

p
h = 4⇡R̂2

p
h00 , (2.8)

where the ˆ denotes that the function R(r) has been evaluated at r = r̂. Finally, the

domain wall action is

SW = �4⇡�

Z
dtdr �(r � r̂)[N2

t � L
2(Nr + ˙̂r)2]1/2 , (2.9)

where � is the tension of the wall, while the matter action is

Smat = �4⇡

Z
dtdr LNtR

2
⇢(r) , ⇢ = ⇤O ✓(r � r̂) + ⇤I ✓(r̂ � r) , (2.10)

i.e. it just includes a cosmological constant term which takes di↵erent values on the two

sides of the wall7. The Hamiltonian and momentum constraints are

H = Hg + 4⇡LR2
⇢(r) + �(r � r̂)E = 0 , (2.11)

P = Pg � �(r � r̂)p̂ = 0 , (2.12)

5In the entire paper we denote x
0 = d

dr
x and ẋ = d

dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.
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not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where

E =

s
p̂2

L̂2
+m2 , m = 4⇡�R̂2

, p̂ = @L/@ ˙̂r , (2.13)

and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)
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⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)

– 8 –

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1

(2R̂)2

⇣
(ÂI � ÂO)� 

2
R̂

2
⌘2

+ (ÂO � 1) = (2.24)

= � 1

(2R̂)2

⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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Solutions of constraints Matching conditions

Dynamics

In this case, Eq. (2.21) becomes

R
0(r̂ ± ✏)

L̂
=

1

2R̂

✓
�R̂

2(H2 ± 
2) +

2GM

R̂

◆
. (2.56)

The motion of the wall is then given by Eq. (2.13) with

V = � 1

(2R̂)2

✓
(H2

I + 
2)R̂2 � 2GMO

R̂

◆2

� 2GMO

R̂
= (2.57)

= � 1

(2R̂)2

✓
(H2

I � 
2)R̂2 � 2GMO

R̂

◆2

�H
2
I R̂

2
. (2.58)

Note that while ⇤O (and hence HO) is a parameter in the Lagrangian (see Eq. (2.10)), M

is an integration constant (see Eq. (2.16)). Note also that the turning points are defined

by V = �1 (see Fig. 7) and are ordered such that (see discussion after Eq. (2.25)),

RS ⌘ 2MOG  R̂i < R̂o  RD ⌘ H
�1
I . (2.59)

Ri Ro

-1

0

R

V e
ff

Figure 7: E↵ective potential for Schwarzschild to dS transitions. Notice there are two turning points.

For R < Ri there is a classical solution where the bubble emerges from the black hole

singularity grows to Ri and then collapses to the singularity. For R > Ro the bubble

emerges from infinity contracts to Ro and then expands to infinity11. Also the character

of the turning point changes when the integration constant is such that the points where

R̂
0
± = 0 coincide with a turning point, i.e.

R̂
0

+ = 0 ) R̂ = RS ⌘ 2MG ; V = �1 for M = MS ⌘ 1

2G
q
(H2

I + 2)
, (2.60)

R̂
0

� = 0 ) R̂ = RdS ⌘ 1

HI
; V = �1 for M = MD ⌘ H

2
I � 

2

2GH
3
I

, (2.61)

11For more details see [4].
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and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)
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Tunneling Probability and WDW

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1

(2R̂)2

⇣
(ÂI � ÂO)� 

2
R̂

2
⌘2

+ (ÂO � 1) = (2.24)

= � 1

(2R̂)2

⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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the coe�cients a and b (there are two coe�cients for each region) can be fixed by imposing

boundary conditions. For instance, requiring that there is only an outgoing wave in region

III (that amounts to requiring that the nucleated universe is expanding and not contract-

ing, as it happens in the Vilenkin proposal for the creation of a dS bubble from ‘nothing’)

gives a relation between the two coe�cients of the under the barrier wave function. On the

contrary, if there is no boundary condition, in general one of the two solutions (positive

or negative exponent) in Eq. (2.28) will dominate in each region, depending on the sign of

the action I. The tunnelling probability in this case can be computed as the ratio between

the squared wave function associated to the expanding bubble in the classical Region III

and the squared wave function of the expanding bubble in the classical Region I. This can

be approximated (up to subtleties that will be addressed in Sec. 3) as the ratio

P =
| (Ro)|2

| (Ri)|2
, (2.29)

In general we interpret the ratio

P(B ! N ) =

����
 N

 B

����
2

, (2.30)

as the relative probability of finding the system in the ‘nucleated’ state N versus the

‘background’ state B, see Sec. 3 for more details. Notice that the two states B and N
do not always have the meaning of ‘initial’ and ‘final’ states (see Sec. 1): the transition

can be clearly interpreted as happening in time if there is an initial classical motion of

the bubble wall. In such a case, the configuration with a type (a) bubble at its maximum

radius (i.e. evaluated at the first turning point Ri, see Fig. 1), plays the role of the

background geometry. In the cases in which there is no initial classical motion of the wall the

interpretation is less clear. For this reason we will refer to the state B as the ‘background’

spacetime, instead of initial spacetime. Since we compute a relative probability, it does

not have to be smaller than one, and we avoid the problem of the normalization of wave

functionals. Observe that in the context of Euclidean instanton computations à la CDL,

the relative probability in Eq. (2.30) is interpreted as tunnelling rate per unit volume and

time, see e.g. [19] for details.

P(B ! N ) ⌘ �B!N . (2.31)

In the typical transitions that we will consider in the next Sections, the background

configuration is given by some spacetime state A, while the nucleated state corresponds to

the spacetime A joined to another spacetime B through a wall W. We will denote such

a configuration by A/B �W. Then the relative probability for being in the configuration

A/B �W versus being in the background state A is

P(A ! A/B �W) =
| (A/B �W)|2

| (A)|2 . (2.32)

Note that the denominator represents the probability of creating the state A out of

‘nothing’ (‘nothing’, whose wave function is simply 1, corresponds to the background space-

time in the ‘nothing’ to A transition). If the state A is a dS bubble, the denominator
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corresponds to the standard HH or Vilenkin wave function, depending on the choice of the

sign in the exponent of the wave function. In Sec. 3 we will argue that both in the case of

dS to dS transitions and in the zero mass limit of the Schwarzschild to dS transitions the

numerator has a similar interpretation.

If Eq. (2.30) is dominated by one term in the numerator and the denominator (see

Sec. 3 for more details), it simplifies to an expression of the form

P(B ! N ) ' exp


2Re (Itot(N )� I(B))

�
, (2.33)

where Itot(N ) denotes the total action evaluated on the nucleated configuration8, while

I(B) ⌘ I denotes the total action evaluated on the background configuration. Notice that,

if there is an initial classical motion of the wall of the bubble (i.e. if there is a first turning

point), the background configuration corresponds to the spacetime evaluated at the first

turning point of the wall. Otherwise, the background must be specified on a case by case

basis.

Computation of the classical action

We note that the dynamical variables are R,L, r̂ and their conjugates ⇡R, ⇡L, p̂. On a

classical trajectory ending at some given values of R, L, r̂ we have in Hamilton-Jacobi

theory9

Stot = Stot[R,L, r̂] =

Z
drL(L,R,R

0
, r̂) , (2.34)

where

�Stot =

Z
dr (⇡L �L+ ⇡R �R) + p̂ �r̂ +

@L
@R0

�R

����
r̂+✏

r̂�✏

. (2.35)

The last (boundary) term needs to be removed from the bulk action in order to have a

well-defined functional derivative with respect to R [9]. The integration to get the classical

action may be done along any path ending at the given values. In particular one may

choose the path that keeps R, r̂ fixed as the integrability conditions will guarantee that

the other functional partial derivatives are satisfied. With this choice we can neglect the

second and third terms in Eq. (2.35) and we can write schematically

Itot = IB + Ib , (2.36)

where IB is the bulk action arising from the integration of the first term in Eq. (2.35), while

Ib is the boundary action coming from the integration of the last term in Eq. (2.35). The

two terms can be written in detail as

IB =
⌘

G

Z
r̂�✏

0
drR

p
AIL

2 �R02 �R
0 cos�1

✓
R

0

L
p
AI

◆�
+

Z
⇡

r̂+✏

dr [I ! O] , (2.37)

Ib =
⌘

G

Z
�R̂ R̂ cos�1

 
R

0

L

p
Â

!����
r̂+✏

r̂�✏

, (2.38)

8In order to simplify the notation, in the following we will suppress the explicit dependence on N : only

over-barred quantities will refer to the background configuration.
9Note that L depends on R

0 since ⇡L does, see Eq. (2.16).
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Wheeler DeWitt Equation

WKB

Transition Probability

(no time evolution)

Using Eq. (2.21) in Eq. (2.16) and Eq. (2.4) (in the gauge Nr = 0 and Nt = 1) one can

write an equation of motion for the wall:

˙̂
R

2 + V = �1 , (2.23)

where, depending on the solution chosen in Eq. (2.21), the potential takes the form

V = � 1

(2R̂)2

⇣
(ÂI � ÂO)� 

2
R̂

2
⌘2

+ (ÂO � 1) = (2.24)

= � 1

(2R̂)2

⇣
(ÂI � ÂO) + 

2
R̂

2
⌘2

+ (ÂI � 1) . (2.25)

So the equation V = �1 gives the turning points for the classical motion of the wall, i.e.

the points at R = Ri and R = Ro in Fig. 1. At a turning point we see from Eq. (2.24) that

ÂO > 0 and from Eq. (2.25) that ÂI > 0. The classical turning points for the geometry

occur at ⇡L = 0, i.e. (see Eq. (2.16)) at

R
02

L2
= A(R) = 1� 2MG

R
�H

2
R

2
. (2.26)

When r = r̂ these are the turning points for the wall, i.e. the solutions of V = �1.

2.2 Wheeler-DeWitt equation and tunnelling probability

The problem of computing the tunnelling probability in semiclassical gravity is similar to

the tunnelling problem of a barrier potential in usual quantum mechanics. In this context,

instead of the Schröedinger equation we need to solve the WDW equation

H = 0 , (2.27)

where the wave functional  is a functional of the geometry and a function of the brane

position r̂. We employ the WKB approximation, for which the wave function  can be

written at leading order in the semi-classical approximation as

 = ae
I + be

�I
, (2.28)

where, given a configuration with action S, we have denoted the combination iS = I and

the action S is evaluated on a classical solution. In the following we will refer to both S

and I as the ‘action’. The two solutions are given by ⌘ = ±1 corresponding to the two

solutions for ⇡L, see Eq. (2.16).

The problem is qualitatively very di↵erent depending on whether the background ge-

ometry includes a black hole or not. If it does, the problem is similar to the usual quantum

mechanical tunnelling through a potential barrier: as shown in Fig. (1), there are two

classically allowed (I and III) and one classically forbidden regions (II). Classically, the

wall expands (or contracts) up to a classical turning point and then re-collapses (or re-

expands). Quantum mechanically, it can tunnel under the barrier and resurface after the

second turning point. The WDW equation has two independent solutions as in Eq. (2.28)

in each of these regions, that need to be matched at the classical turning points. Some of
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O I
W



De Sitter to de Sitter

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10

Ib

����
tp

= � ⌘

G

Z
Ro

0
�R̂R̂

"
cos�1

 
R

0
+

L

p
ÂO

!
� cos�1

 
R

0
�

L

p
ÂI

!#
= (2.45)

= � ⌘

G

⇡

4
R

2
o


✏(R0

+)

1 + |c+|Ro
�

✏(R0
�)

1 + |c�|Ro
+ 2

⇣
✓(�R̂

0

+)� ✓(�R̂
0

�)
⌘�

. (2.46)

In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes

Ib

����
tp

=
⌘

G


⇡

2
R

2
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10We have used the definite integral

Z
1/

p
1+a

0

dx x cos�1 xp
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=
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✓
1� 1p

1 + a

◆
. (2.44)

Also note that cos�1(�x) = ⇡ � cos�1
x.
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Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What

is di↵erent in the two cases is the expression for the background action (which is zero in

the black hole case and is the HH or the Vilenkin wave function for the (initial) dS case

(see below).

Recall now that in dS to dS transitions there is no initial classical trajectory. This

is exactly like the tunnelling from ‘nothing’ discussion in quantum cosmology in which

solutions of the WDW equation are compared at the final (and only) turning point with

the solution to be at scale factor zero (i.e. ‘nothing’). Thus these expressions should be

interpreted as giving the probability to find the space of two dS (or dS and Minkowski)

spaces mediated by a wall compared to have ‘nothing’. We will discuss this further in

Sec. 3.

In this case, the latter configuration is the background, whose action, denoted by Ī, is

given by

I =
⌘

G

Z
⇡

0
dr

2

4R
q
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2
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2 �R
0
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) I =
⌘⇡

2GH
2
O

. (2.53)

which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get

Itot
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#
, (2.54)

which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Same result as Euclidean approach
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interpreted as giving the probability to find the space of two dS (or dS and Minkowski)
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which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we
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which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Background Hartle-Hawking

Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
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given by

I =
⌘

G

Z
⇡

0
dr

2

4R
q

1�H
2
OR

2 �R
0
+ �RR

0 cos�1

0

@ R
0
+

L

q
1�H

2
OR

2

1

A

3

5 . (2.52)

) I =
⌘⇡

2GH
2
O

. (2.53)

which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get
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which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Background Vilenkin

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using
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2
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2
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2
I R

2
, (2.40)
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(M=0)
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Figure 11: Penrose diagrams for de Sitter space with slicing corresponding from left to right to
closed, flat and open slicings, respectively. Notice that the horizontal closed universe slicing is
global.

fig:slicings

with Nt, Nr the lapse and shift functions respectively and d⌦2
2

the line element for the 2-sphere.
The system consists of two de Sitter spaces with cosmological constants ⇤I , ⇤O separated by a
wall of tension � at r = r̂. The bulk and boundary actions are the standard gravitational ones
and the matter action is simply giving by the two cosmological constants, so the total action is:

S =
1

16⇡G

Z

M
d4x

p
�gR +

1

8⇡G

Z

@M
d3y

p
�hK + SM + SW , (5.3)

where K is the extrinsic curvature of the wall and

SM = �4⇡

Z
dtdrLNtR

2 (⇤O✓(r � r̂) + ⇤I✓(r̂ � r)) ,

SW = �4⇡T

Z
dtdr�(r � r̂)

h
N2

t � L2(Nr + ˙̂r)2
i
. (5.4)

In the above we defined T ⌘ 4⇡G� .Following the standard Dirac prescription for this Hamil-
tonian system, the Hamiltonian and momentum constraints can be found and the matching
conditions at the wall lead to an equation for the wall trajectory of the form:

˙̂R2 + V = �1; V = �R̂2

R2
0

, (5.5) {rdot}

where R̂ = R(r̂) and R0 is the turning point:

R2

0 =
4T 2

⇥
(H2

O
� H2

I
)2 + 2T 2(H2

O
+ H2

I
) + T 4

⇤ . (5.6)
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De Sitter Slicings
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From Hamiltonian approach: O(3) symmetry, closed slicing. 
Universe inside the bubble is closed for global slicing.
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An important non-trivial check of the validity of the Schwarzschild to dS calculation for

up-tunnelling is that it exactly reproduces the CDL result when applied to down-tunnelling

as we explicitly derived in the previous Section. As already discussed, the fact that the two

limits HO, M ! 0 lead to di↵erent results is a consequence of the fact that though both

background actions may be interpreted as giving the relevant entropies in the black hole

limit we get zero entropy corresponding to the entropy of the vacuum state of Minkowski

(interpreted as the log of the dimension of the non-degererate vacuum state) while the

H ! 0 limit of dS gives the entropy (i.e. log of the dimension) of the entire HIlbert space

that can be built on Minkowski space. We will discuss this further in the next Section.

FGG

The original study of the Minkowski to dS transition was performed in [3] using the Eu-

clidean formalism. A very detailed study was made of the transition probability and it

was found that the corresponding instantons are singular. Concretely the instantons corre-

spond to Euclidean manifolds over degenerate metrics. This has cast doubt on the validity

of the transition.

Here we want to emphasise that even though the validity of the use of these degenerate

metrics can be questioned, one of the merits of the subsequent work of FMP was to put

these results on firmer ground by using the Hamiltonian approach, in which case there is

no need to introduce degenerate metrics.

In summary, the advantages of Hamiltonian over Euclidean are

• Both results agree but in FMP there is no need to introduce singular geometries;

• Some explicit terms in the action are derived in FMP but introduced by hand in

FGG;

• The spacetime trajectory of the wall can be properly described in a causal diagram;

• Unitarity of the process is built-in within the formalism.

However FGG, aware of the limitations of the Euclidean approach were able to add

the right ingredients to obtain a non-zero amplitude and the fact that their result agrees

with the Hamiltonian approach makes their assumptions more robust. We conclude that

even though the original Euclidean approach for up-tunnelling from Minkowski spacetime

is subject to criticism, the fact that the subsequent Hamiltonian approach gives the same

results provide strong evidence for the validity of this approach.

4.3 Thermal/Tunnelling Approach

A further argument questioning the validity of up-tunnelling from Minkowski space goes

as follows19. Starting from dS to dS, two expressions for the amplitude can be estimated

in the Minkowski limit of one dS (HO ! 0). The first expression assumes detailed balance:

�(1)
up = �down exp


⇡

G

✓
1

H
2
I

� 1

H
2
O

◆�
= �CDL exp (SI � SO) , (4.7)

19We thank Alan Guth for a discussion of this point. See for instance [25].
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Up-Tunneling and Minkowski limit

For HH sign only!



(see also [13]). As a first step towards this objective we believe it is important to revisit

the original proposals for a Minkowski to dS transition.

r = 0

I+

r = 0

I+

I�

r = 0

Figure 3: The Penrose diagram including i) the combined classical trajectory (in blue) starting with the

(a) trajectory at r = 0 that reaches a turning point, ii) the corresponding tunnelling through the wormhole

(horizontal line in orange) to an expanding bubble in trajectory (b) of the same energy, iii) its further

evolution towards infinite radius. The e↵ective spacetime corresponds to patching the two shaded regions.

The green shaded area on the right corresponds to the relevant part of the Schwarzschild spacetime and

the dashed yellow area on the left to the corresponding part of the dS spacetime.

In this paper we will address this question directly by considering the nucleation of

baby universes within the four dimensional context. We will first review the Hamiltonian

argument given by FMP [8, 9] in support of the claim of Guth and collaborators on the

creation of baby universes from behind the horizon of a black hole configuration [3, 4, 14].

While these calculations were somewhat incomplete, since a certain boundary term was

not explicitly worked out (see Sec. 2.3), in the corresponding case of transitions from dS

to dS spaces this can indeed be done and explicit formulae obtained as in [15].

Next we compare these calculations with the vacuum transition probabilities obtained

by CDL [1] and BT [2] using Euclidean instanton methods. In fact the latter paper (which

is the one used by Bousso and Polchinski [10]) is more closely related to the current inves-

tigation since it involves the nucleation of a brane as in the string theory case. We find

that while CDL/BT gives zero transition probability for up-tunnelling from flat space, the

FMP calculation (in agreement with the calculation of FGG) gives a non-vanishing prob-

ability for this. We explicitly compute this amplitude in two independent ways depending

on the way we describe Minkowski space: we consider the zero cosmological constant limit

of dS and the zero mass limit of the Schwarzschild solution. In the latter case we get a

non-vanishing result but in the former case we find a vanishing transition amplitude.

We explain this discrepancy by arguing that it is due to the use of di↵erent relative

probabilities. We interpret the CDL/BT expression as coming from the (absolute value

squared of the) ratio of the Wheeler-DeWitt (WDW) wave functions for the nucleated

spacetime configuration N to the background spacetime configuration B

P =
| N |2

| B|2
, (1.1)

– 4 –

Farhi,Guth, Guven (Euclidean) +  Fischler, Morgan, Polchinski (Hamiltonian)
the laboratory’1 (see also Blau, Guth and Guendelman (BGG) [4] and references therein).

Their analysis starts from an eternal Schwarzschild black hole (S), and involves a Euclidean

instanton that mediates the transition.

R

V e
ff

(a) (b)

Ri Ro

Region I Region II Region III

Figure 1: Pictorial representation of the e↵ective potential associated to a Schwarzschild to dS transition,

see also Fig. 7. Region I and III are the classically allowed regions for the motion of the bubble wall, while

Region II is the classically forbidden region. The horizontal lines correspond to di↵erent wall trajectories

and Ri and Ro (the subscripts ‘i’ and ‘o’ stand for ‘inner’ and ‘outer’) correspond to two classical turning

points of the wall trajectory. Type (a) is a bubble that can classically expand until R = Ri and then

collapse to a singularity. Type (b) contracts from spatial infinity, reflects o↵ the second turning point and

then expands back to infinity. In the quantum version classical trajectory (a) can tunnel to (b). In the dS

to dS transitions the first turning point disappears, see Fig. 5.

In the BGG discussion the trajectories of the bubble wall with respect to the e↵ective

potential were classified into five main types, according to the value of the mass M of

the black hole. We have omitted all but the ones relevant for our discussion since we are

ultimately interested in the M ! 0 limit. In Fig. 1 the trajectory (a) corresponds to a

bubble coming out of the white hole singularity, bouncing o↵ the turning point Ri and

then collapsing to the black hole. Trajectory (b) represents a wall coming in from infinity,

reflecting o↵ the second turning point and then expanding back to infinity. Trajectory (a)

by itself does not allow for an ever expanding universe. Trajectory (b) on the other hand

allows for a continuously expanding universe but su↵ers from the Penrose theorem in the

sense that the wall surface is an anti-trapped surface and cannot escape a singularity (see

Fig. 2). Selecting a point P on the left hand side of the wall trajectory, i.e. within the dS

patch, any pair of orthogonal ingoing geodesics either hit the singularity or past asymptotic

infinity behind the horizon of the observer on the right hand side. However, FGG argued

that tunnelling between these trajectories can result in the spontaneous nucleation of an

expanding bubble at the second turning point Ro, see Fig. 3. The important feature of

the given setup enabling type (a) trajectories to be buildable is the choice of the range

1Please note that the creation of baby universes from Minkowski should not be thought as an instability

of Minkowski spacetime since the original Minkowski spacetime remains after nucleating the dS bubble.
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Tunneling

Schwarzschild to de Sitter
(HO=0)



Zero Schwarzschild mass limit

in the initial state A as P(A ! A/B � W). The transition probabilities for up- and

down-tunnelling therefore read

P(M ! M/dS�W) = exp


⌘⇡

GH2

✓
1� 

4

(H2 + 2)2

◆�
(2.64)

and

P(dS ! dS/M�W) = exp


⌘⇡

GH2

✓
� 

4

(H2 + 2)2

◆�
(2.65)

respectively. The ratio between the two transitions in Eq. (2.64) and Eq. (2.65) is thus

P(M ! M/dS�W)

P(dS ! dS/M�W)
= exp


⌘
⇡

G

1

H2

�
, (2.66)

which is the ratio of the exponentials of the entropy of dS to the exponential of the entropy

of Minkowski (taken as the M ! 0 limit of a Schwarzschild black hole entropy, i.e. zero),

implying that detailed balance is correctly recovered even in the black hole case in the limit

M ! 0.

Now depending on the sign ⌘ we have two di↵erent puzzles. Take the brane tension 

to be vanishingly small  ⌧ H and consider first the case ⌘ = +1. Then Eq. (2.64) (which

is the relative probability for tunnelling from ‘nothing’ to the composite of Minkowski and

dS joined at the brane compared to remaining in the Minkowski ground state) goes over

to the HH wave function for tunnelling from ‘nothing’ to dS space. Now if we take smaller

and smaller values of H we get the well-known divergence of the HH wave function for zero

cosmological constant. This appears to mean that it is infinitely more probable to be in

a dS space with cosmological constant tending to zero than to be in the vacuum state of

Minkowski. Of course this is again a reflection of the fact that the HH wave function is

the exponential of the horizon entropy. In some sense this ratio (in the limit) then is the

probability of being in a random state of the Hilbert space built on the Minkowski vacuum

relative to being in the ground state.

On the other hand with ⌘ = �1 the same ratio gives the probability of being in dS after

tunnelling from ‘nothing’ according to Vilenkin compared to the probability of being in the
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For completeness let us briefly consider also the most general case of SdS to SdS. Taking
two metric functions of the same kind
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Up-tunneling

Down-tunneling

Detailed Balance

in the initial state A as P(A ! A/B � W). The transition probabilities for up- and

down-tunnelling therefore read
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respectively. The ratio between the two transitions in Eq. (2.64) and Eq. (2.65) is thus
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Entropy

where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10

Ib

����
tp

= � ⌘

G

Z
Ro

0
�R̂R̂

"
cos�1

 
R

0
+

L

p
ÂO
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In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes
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10We have used the definite integral
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Also note that cos�1(�x) = ⇡ � cos�1
x.
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M=0 Schwarzschild≠ H=0 de Sitter
(Difference on background wave function)

(Minkowski ≈ Schwarzschild in the M=0 limit)



Bubble Trajectory

Asymptotic speed= speed of light – (M/MP)2<c!

respect to T . After substituting into (5.22) we get 5,

K⌧⌧ = �cos(T )⇢00 � sin(T )⇢03 + sin(T )⇢0

(1 � ⇢02)3/2
H (5.27)

given that K⌧⌧ is constant this is a second order ODE for ⇢ as a function of T . Furthermore
this expression does not depend explicitly on ⇢ and can be easily integrated if we rewrite it as,

p
1 � H2R2

0

HR0

= cos2(T )
d

dT

 
sec T⇢0p
1 � ⇢02

!
(5.28)

which leads to

⇢0 = ±
p

1 � H2R2
0
sin(T )q

H2R2
0
+ (1 � H2R2

0
) sin2(T )

(5.29)

where to fix one integration constant we have imposed ⇢0 = 0 at T = 0, which comes from (5.5).
We will keep the positive signs as it means that the wall speed increases. Notice that ⇢0 < 1 and
that at I+, ⇢0 =

p
1 � H2R2

0
< 1. This expression can be integrated to obtain,

cos(⇢) =
q

1 � H2R2
0
cos T (5.30) {eq:sol1}

where we have used that at T = 0, R0 = cos(⇢(0)). Eq, (5.30) determines the trajectory of the
wall in global coordinates. Now let us analyse this expression, first note that this the trajectory
never crosses the light cone ⇢ = T since T < arccos(

p
1 � HR2

0
cos T ) = ⇢. Also note that all

trajectories end at ⇢ = ⇡/2, since at T = ⇡/2, cos ⇢ = 0. Moreover the world sheet of the
trajectory is a time-like hyperboloid having SO(3, 1) invariance. To see this we can substitute
(5.30) into the equations for the embedding of global de Sitter from (A.3). Hence the equation
for the brane world volume in embedding coordinates is,

X0 = H�1 tan T, X1 = H�1
cos ⇢

cos T
= H�1

q
1 � H2R2

0
, (5.31)
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H2 cos2 T
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� 1 � H2R2

0

H2
. (5.32)

Hence we have the equation for the world sheet of the brane,

� X2

0 + X2

2 + X2

3 + X2

4 = R2

0. (5.33)

{eq:braneworld}
This is the equation of a hyperboloid with SO(3, 1) symmetry6, in other words it is 3 dimen-

sional deSitter space with radius R0 and corresponds to the Lorentzian rotation of Coleman’s [3]
Euclidean bounce solution. {sec:LorentzianGeometry}

5Alternatively we can use that is possible to write K⌧⌧ = �
�̇
Ṙ
, with

� ⌘

q
1�H2R2 + Ṙ2 =

cos ⇢+ sin ⇢ tanT⇢0p
1� ⇢02

6In fact one could have guessed the solution simply by demanding that X1 is a constant since that is the
simplest choice for the embedding given that R

2 cannot be set to a constant, and then fixing the constant from
the fact that at T = 0 = X0, R = R0.
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Figure 11: Penrose diagrams for de Sitter space with slicing corresponding from left to right to
closed, flat and open slicings, respectively. Notice that the horizontal closed universe slicing is
global.

fig:slicings

with Nt, Nr the lapse and shift functions respectively and d⌦2
2

the line element for the 2-sphere.
The system consists of two de Sitter spaces with cosmological constants ⇤I , ⇤O separated by a
wall of tension � at r = r̂. The bulk and boundary actions are the standard gravitational ones
and the matter action is simply giving by the two cosmological constants, so the total action is:

S =
1

16⇡G

Z

M
d4x

p
�gR +

1

8⇡G

Z

@M
d3y

p
�hK + SM + SW , (5.3)

where K is the extrinsic curvature of the wall and

SM = �4⇡

Z
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i
. (5.4)

In the above we defined T ⌘ 4⇡G� .Following the standard Dirac prescription for this Hamil-
tonian system, the Hamiltonian and momentum constraints can be found and the matching
conditions at the wall lead to an equation for the wall trajectory of the form:

˙̂R2 + V = �1; V = �R̂2

R2
0

, (5.5) {rdot}

where R̂ = R(r̂) and R0 is the turning point:

R2

0 =
4T 2

⇥
(H2

O
� H2

I
)2 + 2T 2(H2

O
+ H2

I
) + T 4

⇤ . (5.6)
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With H2

I,O
= 8⇡G⇤I,O/3. The classical trajectory of the wall is then given by:

R(t) = R0 cosh
t

R0

(5.7)

The quantum probabilities are determined from the solutions of the WDW equation H = 0
with P the relative probability of the configuration of the two de Sitter spaces and the wall
compared to that for just one de Sitter:

P(dS ! dS/dS � W) =
| (dS/dS � W)|2

 (dS)
(5.8)

The detailed calculation using the WKB method including a discussion of the matching of the
under-the-barrier wave function to that in the classical region is given in [13] and the result
reproduces the standard exponential factor e�B with B given by Eq. (4.30). This provides yet
another Lorentzian way to derive the same decay rate. But contrary to the mini-superspace
approach, the presence of the wall and its classical trajectory after the transition is made quite
explicit.

 = aeI + be�I , (5.9) {eq:GeneralWF}

where, given a configuration with action S, we have denoted the combination iS = I and the
action S is evaluated on a classical solution. The total action away from the turning point (but
still under the barrier) is
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(5.10) {eq:B1i}

The background action is obtained by setting r̂± = 0 in the above expressions (corresponding
to having the complete dS space with Hubble parameter HO), giving us

I = � ⇡

2GH2

O

h
(1 � H2

Oa2O)3/2 � 1
i

, (5.11) {eq:HHV}

which gives the HH (under the barrier) wave function when substituted into Eq. (5.9) with b = 0
and gives the Vilenkin version when b = 2ia.

Now as pointed out in [36] when the background geometry is a black hole there are two
classically allowed (I and III) and one classically forbidden regions (II) as in the usual tunneling
problem in quantum mechanics, as discussed for instance in section 3 . Classically, the wall
expands (or contracts) up to a classical turning point and then re-collapses (or re-expands). but
quantum mechanically it can tunnel under the barrier and resurface after the second turning

28

results [40]. In general, the limiting speed di↵ers from the speed of light by a small amount of
order M2/M2

P
with M the reference scale of the scalar field potential. Finally, from the Penrose

diagram it can be seen that the trajectory is such that a signal from the centre of the bubble
cannot reach the wall but in principle radiation from the wall can reach the observer at the
centre.
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Figure 12: Penrose diagram for the FMP dS to dS transition. The lower part is the universe
before the transition. The upper part is the universe after the transtion composed of two regions
with di↵erent vacua separated by a wall, which is the red line. The equation of the wall is given
by Eq. (5.30). The pale blue region is the part of the universe with the true vacuum, where the
green dotted lines are open universe constant time slices and the blue dotted lines are closed
universe constant time slices.

5.3 Cosmological implications

Let us now compare the cosmological di↵erences between CDL and a closed universe after
the tunneling transition. This revives the old question regarding the spatial curvature of the
universe. After inflation this issue is considered less urgent since whatever the original curvature
is, a short period of inflation is enough to render the universe essentially flat. However at least
as a question of principle, especially concerning the question of whether the universe is infinite
or finite and also potential observational e↵ects, it is still relevant to address these di↵erences.
See for instance references [41–46] for a recent debate regarding current observations.

Initial conditions and Inflation

Vacuum decay o↵ers a unique physical mechanism to provide the initial conditions for the
evolution of the universe. The initial conditions for the classical cosmological evolution are the
configurations of �(t) and a(t) right after tunnelling that we will define as t = 0.
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Even though calculation done in global slicing, trajectories follow 
geodesics of open slicing



AdS to AdS

first line (and hence its parametrization) is determined by continuity and the sign of R̂0
± which is

determined by the matching conditions and fixed by the geometry on either side of r̂. It should
be also be noted that if the geometry on either or both sides has horizons then R(b) should be
replaced by the solution (horizon) to AI = 0 and R(c) by the solution to AO = 0.

In the current case dS has a horizon R2

D
= H�2

dS
while AdS has no horizon. Let us consider the

transition A ! B where A is deSitter and B is AdS. Thus (recall that H2 ⌘ 8⇡G⇤

3
is positive

for dS and negative for AdS), AO = 1 � H2

AR2 and AI = 1 � H2

BR2 = 1 + |H2

B|R2 and R̂± =
1

2

�
H2

A + |HB|2 ⌥ 2
�
R̂. The last equation implies that R̂0

�/L > 0. Thus the first term in (2.33) is
zero. Also the step function in the integral requires R to be a decreasing function of r to contribute,
and there is internal horizon in empty dS (no blackhole) R(1) = 0. So let us take a parametrisation
such that R idecreases from r̂ to r = c as above, and then increases. The latter region of course
gives no contribution to the integral. Hence we have (Note that from figure (3) that R̂0

+ is negative
and remains negative in the limit M ! 0 for all R � 0 )

SB

⇣
R̂
⌘
=

i⌘⇡

2G
(0� R̂2), SB (0) =

i⌘⇡

2G
(0). (2.34)

Note that a potetntial divergence (since AdS is non compact) is averted since the step function in
the first term of (2.33) is zero. Subracting the second equation from the first and adding the wall
contribution we thus get:

BdS�>AdS =
⌘⇡

G

(�
(H2

A + |H2

B|)2 + 2(H2

A � |H2

B|)
 

Ro

4H2

A|H2

B|
� 1

2

�
H�2

A + |H�2

B |
�
)

, (2.35) {eq:BdSAdS}

with R0 given by (2.17) with the above substitution H2

B ! �|H2

B|. Also in this case there is no
constraint on the tension .

As in the case of dS to dS the configuration after the transition is actually the patching together
of the original dS with an AdS space separated by a wall. The latter will however collapse if any
matter is introduced as argued in [3]. After the collapse we will be left with a segment of dS space
bounded by an end of the world brane. On the other side of the brane there is no geometry left
and is equivalent to Witten’s bubble of nothing [7].

2.3 AdS to AdS

The AdS to AdS transitions can be analysed similarly to the previous ones. However for transitions
between AdS states there is a constraint that needs to be satisfied to guarantee that the turning
point radius R0 is real. In this case H2

I = �|HI |2 < 0, H2

O = �|HO|2 < 0. Now we have from
(2.17),

1

4

✓
1



�
�|H2

O|+ |H2

I |
�
� 

◆2

> |H2

O|,

i.e.

 <
���
q
|H2

I |�
q
|H2

O|
���, or  >

���
q
|H2

I |+
q
|H2

O|
���, (2.36) {eq:kappaconstraint}

In this case,

SB[R̂] =
⌘⇡

2G

h⇣
R̂2 � R2(0)

⌘
✓(�R̂0

�) +
⇣
R2(1)� R̂2

⌘
✓(�R̂0

+)
i

(2.37)
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Mechanics
 (R̂) = aeI + be�I (1.6)

where I = iS is the action evaluated at R̂. For the case when one of the two exponentials dominate,
the transition rate can be written in terms of a di↵erence between two actions, similar to (1.1) but
as we will see they di↵er in important ways.

V

!"

-1

!"1 !"2

State A Barrier State B

V

!"

-1

!"1=0
!"2

Barrier State B

Figure 1: Two realisations of the potential for the bubble wall R̂. On the left, a bubble is materialised in region
A and grows until it reaches the turning point R̂1 and classically bounces but quantum mechanically can tunnel to
region B at the second turning point to continue expanding. The WKB approximation can be used in all the regions
of the potential outside and inside the barrier. This is a typical situation for black hole geometries. On the right
there is only one turning point (the first turning point has moved to zero) and the bubble materialises directly in
state B. This is a typical potential for pure dS or AdS that can be obtained by setting the black hole mass to zero
from the black hole geometry.

fig:potentialRhat

In the next sections we will provide a short summary of this prescription and its application to
explicitly compute the transition rates between vacuum states. Let us summarise our main results:

• We explicitly compute the rates for transitions between any of dS and AdS states including both
up and down tunneling and provide explicit expressions for each of the transition rates. The
cases corresponding to up-tunneling from AdS are new results whereas the others are known and
we agree with the previous results in the literature.

• We consider Minkowski spacetime M in two di↵erent limits: First, starting from pure dS with
curvature ⇤ > 0 and taking the limit ⇤ ! 0 in this case we obtain vanishing up-tunneling
transition as in the Euclidean case. Second, we start with a AdS spacetime with curvature ⇤ < 0
and take the limit ⇤ ! 0. In this case we get a finite transition amplitude. We interpret the
results by noticing that in the dS limit case, the entropy S / 1/

p
⇤ ! 1 whereas in the AdS

limit case the background contribution in AdS vanishes which corresponds to a vanishing entropy
for AdS which is inherited in the Minkowski limit.
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Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:

B = � ⌘⇡

2G

"���H2

I

���
��H2

O

���2 � 2
���H2

I

��+
��H2

O

���

2
��H2

I

����H2

O

�� R0 �
 

1��H2

O

�� �
1��H2

I

��

!#
. (2.38)

Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2

I ! �|H2

I |

R0 =
2

|� |H2

I |+ 2|

✓
1� H2

0
(2 + |H2

I |)
(�|H2

I |+ 2)
+ O

�
H4

0

�◆
.

Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
�
Itot|tp � Ī

�
= � ⌘⇡

2G|HI |2


24

(|HI |2 � 2)2

�
, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
2G

1

H2

0

so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:

1

2
B = Ib = � ⌘⇡

4G|HI |2


24

(|HI |2 � 2)2

�
(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:
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Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2

I ! �|H2
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Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
�
Itot|tp � Ī
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2G|HI |2
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(|HI |2 � 2)2
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, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
2G

1

H2

0

so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:

1
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B = Ib = � ⌘⇡

4G|HI |2
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(|HI |2 � 2)2

�
(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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Minkowski to AdS

Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:
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Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2
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Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
�
Itot|tp � Ī
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= � ⌘⇡

2G|HI |2
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(|HI |2 � 2)2
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, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
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H2
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so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:
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B = Ib = � ⌘⇡

4G|HI |2
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(|HI |2 � 2)2
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(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:
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Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2
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Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
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Itot|tp � Ī
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= � ⌘⇡

2G|HI |2
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(|HI |2 � 2)2
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, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
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1
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0

so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:

1

2
B = Ib = � ⌘⇡

4G|HI |2


24

(|HI |2 � 2)2
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(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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AdS to dS

There is however a puzzling issue with regard to these transition probabilities P(M ! AdS) ⇠
e�|B|. This is the fact that the transition probability goes to unity the deeper the AdS minimum
is i.e. in the limit |HI |2 ! 1! This seems bizzare since it means the Minkowski space is unstable
to decaying to the deepest (in the EFT this would mean |⇤|1/4 . MP (or the string or KK scale if
the theory is compactified string theory).

2.5 AdS to dS/M

In order to avoid potential problems with the parametrization in this case, one needs to consider
it as uptunneling to dS (A) from an AdS black hole in the the limit M ! 0 (B). The latter is
essentially the same as that studied by FMP. Since both Minkowski and AdS have no horizon the
calculation in the Appendix (which is a reproduction of the FMP one) for the small mass case iii
applies and so from eqn. (5.4) (setting R1 = Rs = M = 0,

SBu (R2 = R0)� SBu(R1 = 0) = � i⌘⇡

G

�
H�2

A

�
. (2.42) {eq:FMP3}

In this case there is no constraint on the tension  and adding the wall term we get.

BAdS�>dS =
⌘⇡

G

(�
(|H2

B|+ H2

A)
2 + 2(�|H2

B|+ H2

A)
 

Ro

4|H2

B|H2

A

+
1

2

✓
1

H2

A

� 1

|H2

B|

◆)
, (2.43) {eq:BAdSdS}

with R0 again given by (2.17) with the substitution H2

B ! �|H2

B|.
For |H2

B| > |HA|2 and small  the factor in parentheses in the expression above for B is positive, so
choosing ⌘ = �1 we get an exponentially suppressed tunneling probability and hence an exponen-
tially enhanced lifetime and so gravitational collapse is exponentially more likely than tunneling
to dS. However this depended on the choice of ⌘ = �1 which is not what one chose for the dS to
dS case, where the issue was settled (as discussed in section 3 of [14]), by arguing that this choice
(which corresponds to the HH wave function rather than the tunneling one), gives the dominant
contribution to the wave function (and indeed was consistent with detailed balance). Here we can-
not make the same argument since that calculation depended crucially on the compactness of the
spatial sections of dS.

On the other hand detailed balance holds (see below) as in the dS to dS case for the ⌘ = 1 case. In
this case this quantum transition is exponentially more probable than the gravitational collapse of
AdS. Then we have a situation where the AdS can tunnel to a configuration of AdS separated by
a wall/brane from a dS space with the AdS eventually collapsing leaving behind a dS bounded by
a end of the world brane.

However it should be noted that the ‘Minkowski’ limit HA ! 0 is in fact divergent BAdS�>dS !
⌘⇡
2G

1

H2

A
! ±1. This is to be expected since the limit is taken from the amplitude for transition to

a dS space whose horizon and hence entropy diverges as the dS radius goes to infinity. This is in
contrast to the corresponding uptunneling from AdS to a Minkowski space (M) which is the limit
of the AdS radius going to infinity. Note that this limit has the same topology as M in contrast to
the infinite radius limit of dS which still has the topology of a sphere.
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Detailed balance if AdS entropy=0!

Minkowski limit from dS blows-up but from AdS is finite!?

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
=

⌘⇡

2G

1

H2

A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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To Nothingness and Back?
of the spatial sections of AdS) is not valid since as we saw earlier the FMP bulk contribution is
zero at the tunning points so that the tunneling amplitude is actually finite.

Actually, the limit for HO ! 1 falls beyond the validity of the EFT. However we may consider
it formally by just assuming HO � HI, M, . Simple inspection of equations (3.12) show that the
wall contribution to the action is imaginary and therefore does not contribute to the amplitude and
we are left essentially with the transition determined by the bulk contribution:

B '
⌘⇡

2G
R2

dS =
⌘⇡

2G

1

H2
I

(6.9)

. This is precisely the (log of the) HH (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1) tunneling
factor for creating a universe from nothing!

We could have also seen this naively as follows: take the limit |H2
O| ! 1 first in (3.14) (with

H2
O ! �|H2

O| which gives R0 ! 2/|H2
O|) and then substituting in (??) we get

B !
⌘⇡

G

(�
(|H2

O|)
2
 
2/|H2

O|

4|H2
O|H

2
I

+
1

2

✓
1

H2
I

+ 0

◆)
=

⌘⇡

2G

1

H2
I

. (6.10) {eq:nothing}

Again, we do not need to just set HO ! 1 but just assume that HO � HI, M,  and perform
the integrals numerically. We illustrate this in the figures:

Add figures for this limit

Thus contrary to the claim of [5] we can reproduce the tunneling from nothing picture of HH
and V/L by interpeting nothing as deep AdS as they did! It is interesting to note that even
though the bubble radius goes to zero in this limit (which normally would have been interpreted
as signalling the absence of tunneling) there is a cancellling singularity in B resulting in a finite
tunneling probability.

7 The brane trajectory after nucleation

The metric on the brane is
ds2 = �dt2 + R̂2(t)d⌦2 (7.1) {eq:brane-metric}

The first (energy) integral of the equation of motion for the brane is (from now on we’ll drop the
hat on R in this section since we are just discussing the brane motion),
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The same as Vilenkin, Hartle-Hawking wave functions!
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zero at the tunning points so that the tunneling amplitude is actually finite.
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. This is precisely the (log of the) HH (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1) tunneling
factor for creating a universe from nothing!
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H2
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the integrals numerically. We illustrate this in the figures:
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This is the central claim of this paper. We spend the remainder of this section justifying

this claim, first by showing that this limit is smooth, and, second by showing that this is not

a special feature of the 6D Einstein-Maxwell theory and in fact holds in all compactifications

that admit a bubble of nothing.

extra dimensions

r

extra dimensions

r

extra dimensions

r

extra dimensions

r

Figure 6: A sequence of tunneling instantons that discharge di↵erent amounts of flux. The more charged
branes in the stack, the more units of flux are discharged, and the smaller the size of the extra dimensions
inside the bubble. In the limit that all the flux is discharged, the area-radius of the bubble stays nonzero,
but the size of the extra dimensions inside the bubble goes to zero. This is the bubble of nothing, and can
be compared with Fig. 1. The exact instanton profiles are computed numerically in [10]; this figure shows
the qualitative behavior.

2.2.3 Bubbles of next-to-nothing

The bubble of nothing is the limit of flux tunneling in which all the flux is discharged; despite

being topology-changing, it is the limit of a family of transitions that are topology-preserving.

In what sense is this limit smooth?

For thin branes, the flux tunneling instantons amongst the vacua of the 6D Einstein-

Maxwell model break up into three parts: a false-vacuum exterior, a true-vacuum interior,

9

For SAdS to dS

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get
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1

H2

A
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That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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Using equation (3.3) we can write explicitly:

IW =�
⌘
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Z
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2R
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1� 2GMO
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OR2
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dRR cos�1
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R (MO � MI) + R2(±H2

O ⌥ H2
I + 2)

2R
q
1� 2GMI

R ⌥ H2
I R2

1

A . (3.12) {eq:Integrals}

The total action is given by:
Itot = IB + IW , (3.13)

Note that at the turning points R02 = L2A and therefore the term in the expression for IB the
square root term vanishes and the argument of cos�1 is ±1. So the only non-vanishing contribution
corresponds to R0/L = �

p
A  0. This is a very strong constraint on the allowed values of the

extrinsic curvatures. A further condition is to guarantee that the bubble radius at the turning
points is real. Both conditions play a role in the concrete cases we will study next.

3.2 dS to dS transitions

The simplest transitions to study are dS to dS for which both down and up-tunneling are allowed.
This correspond to the particular cases in which both black hole masses vanish, MI = MO = 0. In
this case there is only one turning point R0 given by:

R�2
0 =

1

42

⇥
(H2

O � H2
I )

2 + 22(H2
O + H2

I ) + 4
⇤

(3.14) {eq:R0dSdS}

Also, the integrals appearing in the expression for Ib (3.12) can be done analytically. For general dS
(and AdS) transitions the brane contribution being local is finite and can be computed explicitly:

Ib =
⌘

G
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�)�⇥(�R̂0
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⇡
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2 + 2(H2
O + H2

I )

8H2
OH2

I

R0

�
. (3.15) {eq:wall}

where ✏(R̂0
± refer to the sign of R̂0

±.

For the bulk integrals, let us consider explicit parametrisations for the dS coordinates and choose
for concreteness the conformal coordinates:

ds2 =
a2

cos2 T

�
�dT 2 + dr2 + sin2 rd⌦2

2

�
(3.16)

In considering a dS to dS transition we have to match two dS metrics with di↵erent values of
the fixed time coordinate. To be more explicit let us start writing explicitly the metric functions
L, R in the interior and the exterior of the wall.

5

Here  = 4⇡G� where � is the tension of the wall and ÂI,O are the static metric functions
evaluated at r = r̂. The indices I, O refer to interior and exterior of the wall;

A↵ = 1�
2GM↵

R
⌥ H2

↵R2 , ↵ = I, O (3.4)

where ±H2
↵ = 8⇡G

3 ⇤↵, with upper sign corresponding to de Sitter and the lower one to anti-de
Sitter, and M↵ is the standard integration constant corresponding to a black hole mass. The
dynamics of the wall gets reduced to the equation of motion:

˙̂R2 + V = �1 , (3.5) {potential}

with the e↵ective potential:

V = �
1

(2R̂)2

⇣
(ÂI � ÂO)� 2R̂2

⌘2
+ (ÂO � 1) (3.6)

which is unbounded from below with a local maximum and one or two turning points at V = �1
depending on the parameters H↵, M↵. The classical turning points of the geometry correspond to
vanishing conjugate momenta for L (⇡L = 0) which imply:

R02

L2
= A(R) = 1�

2MG

R
⌥ H2R2 . (3.7) {eq:TurningPoints}

For r = r̂ these correspond to the turning points of the potential (V = �1).

The sign of R0(r̂) plays an important role since R0 is proportional to the extrinsic curvature K̂
and indicates if the wall at r = r̂ is bent towards the interior or exterior regions.

The transition rate from the background B to the nucleated state N (including the two space-
times and the wall) can be written as:

P (B ! N ) =
k (N )k2

k (B)k2
(3.8)

where each of the wave functions can be seen as the creation from nothing of the corresponding
state as in the previous section. These can be written in the WKB approximation as

 = aeI + be�I (3.9)

where I = iS. For the numerator we will have a bulk contribution IB and a boundary contribution
IW which take the form:
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L
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, (3.11) {eq:SclassicalBoundary}
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The total action is given by:
Itot = IB + IW , (3.13)

Note that at the turning points R02 = L2A and therefore the term in the expression for IB the
square root term vanishes and the argument of cos�1 is ±1. So the only non-vanishing contribution
corresponds to R0/L = �
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extrinsic curvatures. A further condition is to guarantee that the bubble radius at the turning
points is real. Both conditions play a role in the concrete cases we will study next.

3.2 dS to dS transitions

The simplest transitions to study are dS to dS for which both down and up-tunneling are allowed.
This correspond to the particular cases in which both black hole masses vanish, MI = MO = 0. In
this case there is only one turning point R0 given by:
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Also, the integrals appearing in the expression for Ib (3.12) can be done analytically. For general dS
(and AdS) transitions the brane contribution being local is finite and can be computed explicitly:
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for concreteness the conformal coordinates:
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In considering a dS to dS transition we have to match two dS metrics with di↵erent values of
the fixed time coordinate. To be more explicit let us start writing explicitly the metric functions
L, R in the interior and the exterior of the wall.
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Bulk Contributions

In the case of initial dS (with H = HO) to a final dS (with H = HI) we had only one turning
point so, R1 = 0, R2 = R0where,

AO = 1� H2
OR2, AI = 1� H2

I R2, (4.11) {eq:AOIHH}
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O � H2
I )
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I ) + 4
⇤
, (4.12) {eq:VHH}
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(H2
O � H2

I )
2 + 22(H2

O + H2
I ) + 4

. (4.13) {eq:RoHH}

and there is no initial turning point. Also the matching conditions are now,

R̂0
±

L
=

1

2R̂
(H2

O � H2
I ⌥ 2)R̂2

⌘ c±R̂ (4.14) {eq:R’HH}

In this case we were able to evaluate explicitly the wall term but here we’ll be more interested in the

bulk term. For a general value of R̂ this was explicitly evaluated to be (using 1�✓
⇣
�R̂0

+

⌘
= ✓(R̂0

+)

in eqn. 2.50 of DMPQ ).
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i
(4.15) {eq:SBHH}

This formula explicitly displays the expected symmetry under O $ I which implies R̂± $ �R̂⌥.

The action for the initial point (which in this case is R̂ = 0) is then IBu

⇣
R̂ = 0

⌘
= ⌘⇡

2GH�2
O where

in this limit we need to take ✓(�R̂0
�) ! 0 and ✓(�R̂0

+) ! 0. To obtain this latter convention we

must consider the initial point R̂ = 0 to be the limit of the turning point R1 ! 0 as (M ! 0) in
the SdS case discussed below (see line after eqn. (4.16)).

In the SdS to SdS case this generalizes to
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For R̂ = R2, ✓(�R̂0
�) = 1, ✓(�R̂0
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To get the total action we have to add to these the boundary action (which we cannot compute
analytically when M 6= 0). Observe that these expressions go to the corresponding expressions in
FMP for For ⌘ = 1 the corresponding exponentials are the dominant terms in the numerator and

denominator of | 
h
R̂
i
|/| [R1] |.

Let us now consider the transitions A ! B (with SA > SB) which we may call up-tunneling
and B ! A) we call down-tunneling. The probability of finding the wall at a point R̂ compared to
that at the initial turning point R1 is
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(4.18) {eq:Pupdown}
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and there is no initial turning point. Also the matching conditions are now,

R̂0
±

L
=

1

2R̂
(H2

O � H2
I ⌥ 2)R̂2

⌘ c±R̂ (4.14) {eq:R’HH}

In this case we were able to evaluate explicitly the wall term but here we’ll be more interested in the

bulk term. For a general value of R̂ this was explicitly evaluated to be (using 1�✓
⇣
�R̂0

+

⌘
= ✓(R̂0

+)

in eqn. 2.50 of DMPQ ).

IBu

⇣
R̂
⌘
⌘ iSBu

⇣
R̂
⌘
=

⌘⇡

2G

h
(✓(�R̂0

+)� ✓(�R̂0
�)R̂

2 + ✓(�R̂0
�)H

�2
I + ✓(R̂0

+)H
�2
O

i
(4.15) {eq:SBHH}

This formula explicitly displays the expected symmetry under O $ I which implies R̂± $ �R̂⌥.

The action for the initial point (which in this case is R̂ = 0) is then IBu

⇣
R̂ = 0

⌘
= ⌘⇡

2GH�2
O where

in this limit we need to take ✓(�R̂0
�) ! 0 and ✓(�R̂0

+) ! 0. To obtain this latter convention we

must consider the initial point R̂ = 0 to be the limit of the turning point R1 ! 0 as (M ! 0) in
the SdS case discussed below (see line after eqn. (4.16)).

In the SdS to SdS case this generalizes to

IBu

h
R̂
i
=

⌘⇡

2G

h
✓(�R̂0

�)
⇣
R2

I,c � R̂2
⌘
+ ✓(�R̂0

+)
⇣
R̂2

� R2
O,s

⌘i

+
⌘⇡

2G

h
✓(R̂0

+)
⇣
R2

O,c � R̂2
⌘
+ ✓(R̂0

�)
⇣
R̂2

� R2
I,s

⌘i
. (4.16) {eq:Ibulk}

For R̂ = R2, ✓(�R̂0
�) = 1, ✓(�R̂0

+) = 1, while for R̂ = R1, ✓(�R̂0
�) = 0, ✓(�R̂0

+) = 0. Hence

IBu [R2] =
⌘⇡

2G

⇥�
R2

I,c � R2
O,s

�⇤
, IBu [R1] =

⌘⇡

2G

⇥�
R2

O,c � R2
I,s

�⇤
. (4.17) {eq:IBR12}

To get the total action we have to add to these the boundary action (which we cannot compute
analytically when M 6= 0). Observe that these expressions go to the corresponding expressions in
FMP for For ⌘ = 1 the corresponding exponentials are the dominant terms in the numerator and

denominator of | 
h
R̂
i
|/| [R1] |.

Let us now consider the transitions A ! B (with SA > SB) which we may call up-tunneling
and B ! A) we call down-tunneling. The probability of finding the wall at a point R̂ compared to
that at the initial turning point R1 is

P"

⇣
R̂
⌘
=

|a|2e2I
AB

Bu (R̂)+2IAB

W (R̂) + . . .

|a|2e2I
AB

Bu (R1)+2IAB

W (R1) + . . .
, P#

⇣
R̂
⌘
=

|a|2e2I
BA

Bu (R̂)+2IBA

W (R̂) + . . .

|a|2e2I
BA

Bu (R1)+2IBA

W (R1) + . . .
(4.18) {eq:Pupdown}

12The numerators are symmetric under A $ B. So is2 IW . Hence using the second eqn in (4.17) we
get,

P"
P#

= e
⇡

G
[(R2

B,c
�R2

A,s)�(R2
A,c

�R2
B,s)] = eSB�SA . (4.19) {eq:detalied balcance}

Thus we have detailed balance again.

In the limit RA,Bs ! 0 we recover the earlier results for dS to dS transitions. One may think
that to get FMP/FGG we need to take RA,c ! 1. This would give P" ! 0 in agreement with the
corresponding limit in the dS to dS case. The FMP/FGG case however corresponds to subtracting
the infinity in the horizon area term of dS/SdS when the dS radius goes to infinity to get the
entropy of the black hole in asymptotically Minkowski space to be just the black hole entropy.

The di↵erence comes from the fact that in the asymptotically Minkowski case Gibbons and
Hawking [?] added a term (to the boundary term which is necessitated by Dirichlet boudary con-
ditions) evaluated in flat space which cancels the otherwise infinite contribution of the GHY term
in the asymptotic limit. This infra-red subtraction is what gives the entropy of the black hole to
be ⇡r2s and the entropy (as well as the ADM energy) of flat Minkowski space to be zero3. This is
a physical requirement. In other words the infinite radius limit of dS space is not flat Minkowski
space any more than a topological 3-sphere of arbitrarily large radius is the same as R3. The topol-
ogy of dS is R ⇥ S3 and however large its radius, is not R4. Thus although the above formulae -
although valid for SdS spaces of arbitrary radii, do not imply (from the vanishing of (4.19)) that
they forbid up-tunneling from asymptotically Minkowski space. In fact as we’ll discuss anon, the
same is true of SAdS to SdS (or dS) since the entropy of SAdS is simply the entropy of the black
hole since AdS has no cosmological horizon.

5 dS to AdS and AdS to dS

Let us first consider pure dS and AdS spaces (i.e. with no black holes). The dS to AdS case
is straightforward and gives the same result as CDL but the reverse (up) transition is somewhat
intriguing in that the instanton calculation is supposed to give zero for the transitions probability.

Let us consider the formula (4.15) but with H2
O replaced by �H2

O as this substitution in (4.11)
gives the appropriate (globally valid) static metric for AdS . Thus from (4.15) we have,

IBu

⇣
R̂
⌘
⌘ iSBu

⇣
R̂
⌘
=

⌘⇡

2G

h
(✓(�R̂0

+)� ✓(�R̂0
�)R̂

2 + ✓(�R̂0
�)H

�2
I � ✓(R̂0

+)H
�2
O

i
. (5.1) {eq:SBHH-1}

Also the matching conditions become,

R̂0
±

L
=

1

2R̂
(�H2

O � H2
I ⌥ 2)R̂2

⌘ c±R̂ (5.2) {eq:R’HH-1}

2
While the bulk action is symmetric only for a general point and loses this symmetry at the turning points R1,2

as is clear from (4.17), the wall action clearly has this symmetry even at these points as is seen from (4.3).
3
In E. Weinberg’s book on page 283 it is stated the GHY term for Minkowski is negative infinity and is zero in

the absence of the GHY term. However it should be noted that the GHY term consists of two pieces and the second

piece is explicitly included to make the Minkowski vacuum action (and hence its entropy) zero. A similar term should

be included if the AdS vacuum is to be assigned zero entropy since it has no horizons. This means that the entropy

of both a Minkowski black hole and an AdS black hole is just the horizon entropy of the blackholes.
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Figure 1: Left panel : Example of dS (green) to AdS (blue) transition. In this case r̂ < ⇡/2 both in the interior and

the exterior. Consequently, R
0
� > 0 and R

0
+ > 0. Right panel : Example of dS (green) to AdS (blue) transition. In

this case r̂ < ⇡/2 in the interior and r̂ > ⇡/2 in the exterior, so that R
0
� > 0 and R

0
+ < 0.

fig:dStoAdS_1

Figure 2: Left panel : Example of dS (green) to AdS (blue) transition, with an infinite AdS in the interior. In this

case r̂ 2 [⇡/2,⇡] in the interior and r̂ < ⇡/2 in the exterior. Consequently, R
0
� < 0 and R

0
+ > 0. Right panel : in this

case r̂ 2 [⇡/2,⇡] in the interior and r̂ > ⇡/2 in the exterior. Consequently, R
0
� < 0 and R

0
+ < 0.

fig:dStoAdS_2

with R0 given by (3.14) with the above substitution for H2
I .

As in the case of dS to dS the configuration after the transition is actually the patching together
of the original dS with and AdS space separated by a wall. The latter will however collapse as
argued in [17]. After the collapse we will be left with a segment of dS space bounded by an end
of the world brane. On the other side of the brane there is no geometry left and is equivalent to

8

Using the explicit expression for ⇡L (in the gauge Nr = 0) one can write the (first integral of the)
equation of motion for the brane:

˙̂R2 + V = �1 (4.5) {eq:EofM}

V = �
1

(2R̂)2

⇣
(ÂI � ÂO)� 2R̂2

⌘2
+ (ÂO � 1) (4.6) {eq:V}

= �
1

(2R̂)2

⇣
(ÂI � ÂO) + 2R̂2

⌘2
+ (ÂI � 1) (4.7) {eq:Valt}

So the equation V = �1 gives the (two) turning points for R̂, R1 < R2 for the classical motion of
the brane. At a turning point we see from (7.3) that ÂO > 0 and from (4.7) that ÂI > 0. No

The classical turning points for the geometry occur at ⇡L = 0, i.e.

R02

L2
= A(R) = 1�

2MG

R
� H2R2

When r = r̂ these are the turning points for the brane i.e. the solutions of V = �1. For 3
p
3GM <

H�1 the geometry has two horizons Rs < Rc. We may identify Rs as the blackhole (Schwarzchild)
horizon (becoming 2GM when H ! 0) while Rc is the cosmological horizon (becoming H�1 when
M ! 0). We have

A = �
H

R
(R � R�) (R � Rs) (R � Rc)

R� < 0 < 2GM < Rs < 3GM < Rc

We also see from the turning point equation V = �1 that

Rs < R1 < R2 < Rc

.For the turning point geometries the bulk action SB simplifies with the first term in (4.2) giving

zero and the second term contributes only when ✏(R0) = �1 i.e. whenever cos�1

✓
R0

L
p

AI,O

◆
= ⇡.

Thus we have.

iSB(R̂) = �
⌘⇡

G

Z r̂

0
drR0R✓(�R0

�) +

Z 1

r̂
drR0R✓(�R0

+)

�

=
⌘⇡

G

"Z R̂

0
dRR✓(�R0

�) +

Z R1

R̂
dRR✓(�R0

+)

#
(4.8) {eq:SBtp}

The general dS-Blackhole case is complicated (for a discussion of this see cite Johnson thesis). For
R < Ri there is a classical solution where the bubble emerges from the BH singularity grows to 1
and then collapses to the singularity. For R > R2 the bubble emerges from infinity contracts to Rf

and then expands to infinity1. Also the character of the turning point changes when the integration
constant M is such that the points where R̂0

± = 0 coincides with a turning point for R̂. i.e.

R̂0
+ = 0,) R̂ = Rs, V = �1 forM = Ms, where

2GMs

R3
s(MS)

= 2
�
�
H2

O � H2
I

�
, (4.9) {eq:Ms}

R̂0
� = 0,) R̂ = Rs; V = �1 forM = Mc, where

2GMc

R3
c(Mc)

= 2 +
�
H2

O � H2
I

�
(4.10) {eq:Mc}

1
For more details see BGG [9].

11

Turning point geometry 𝝅𝐋 = 𝟎

I : R = sin r
HI cosTI

, L = 1
HI cosTI

(3.17)

O : R = sin r
HO cosTO

, L = 1
HO cosTO

, (3.18) {eq:Rdsds}

The matching at r = r̂ (same physical radial coordinate) happens at HO cos T̂O = HI cos T̂I. Note
that while R is positive in the full range r 2 (0, ⇡), its derivative R0 < 0 only in the r 2 (⇡/2, ⇡)
range. The contribution to the bulk integral

IB /

Z
RdR⇥(�R0) (3.19)

depends if the matching occurs at r  ⇡/2 or r � ⇡/2. In the first case we get IB / 1/H2
I . In the

second case we get IB / 1/H2
O. When combined with the boundary integral both give the same

result for Itot = IB + Ib:

Itot = �
⌘⇡

2G

(�
(H2

O � H2
I )

2 + 2(H2
O + H2

I )
 

R0

4H2
OH2

I

�
1

2

�
H�2

I + H�2
O

�
)

(3.20) {eq:ItpdSdS}

whereas for the background we only have the full bulk dS which trivially gives:

Ī =
⌘⇡

2GH2
O

=
⌘

2
SO

where SO = ⇡/(GH2
O) is the horizon entropy of the dS space with radius H�1

O .

The transition rate from background B = dS to the nucleated state N consisting of portions of
the two dS spaces and the wall is:

P (B ! N ) =
k (N )k2

k (B)k2
/ eB = e2(Itot�Ī) (3.21)

where, ignoring phases and WKB pre-factors and writing I ⌘ iSclassical, we have

 (N ) =  (R0) = aeItot + be�Itot (3.22) {eq:PsiR0}

 (B) =  (0) = aeĪ + be�Ī (3.23) {eq:Psi0}

and we have assumed that the coe�cient a 6= 0 and so the first term on each of the two expressions
dominate for Itot, Ī � 0. The transition rate is then determined by:

B = �
⌘⇡

G

(�
(H2

O � H2
I )

2 + 2(H2
O + H2

I )
 

R0

4H2
OH2

I

�
1

2

�
H�2

I � H�2
O

�
)

(3.24) {eq:ItpdSdS}

Note that both R0 and Itot are symmetric under the exchange HI $ HO even though the
transition rate B is not symmetric. Therefore the only di↵erence between up and down tunneling
comes from the background for which Ī is equal to the corresponding entropy. Therefore

Pup = e⌘(Sfv�Stv)Pdown (3.25) {eq:updown}

6

SdS to SdS

B à A vs A à B



SAdS to dS

This can be easily seen by the conditions coming from the expression of the potential at the turning
points ÂI = 1 � H2

I R2 > 0 implying RI,O  RdS and ÂO = 1 � 2GM/R + H2
OR2 > 0 which by

looking at the coe�cients determining the single root of the cubic, it can seen that it implies
RS  RI,O.

Also to define the domains for the integration parameter M we compute it first for the case
R0

+ = 0, V = �1 which implies gives the value for M :

M = MS =
H2

O + H2
I + 2

2G
�
H2

I + 2
�3/2 , for R0

+ = 0, V = �1 (6.6)

For the case R0
� = 0, V = �1 we get

M = MD =
H2

O + H2
I � 2

2GH3
I

, for R0
� = 0, V = �1 (6.7)

Notice that for HO = 0 this reduces to the FMP results as it should. It is also easy to prove that,
as in the FMP case, MD  MS.

Therefore we have the same situation as in the Schwarzschild to dS transition in which the bulk
contribution to the transition rate is determined by:

IB

����
tp

⌘ IB

����
RO

RI

=

8
><

>:

⌘⇡
2G(R

2
O � R2

I ) , M > MS ,
⌘⇡
2G(R

2
O � R2

S) , MS > M > MD ,
⌘⇡
2G(R

2
dS � R2

S) , MD > M .

(6.8) {eq:SB3}

Add figures to explain these results

As in FMP we are interested in the latest case MD > M to take the small M limit. As in there
we may take the limit M ! 0 which actually means M ! Mp which is when we can have a black
hole in the EFT regime.

So we have explicitly a non zero transition rate from AdS black hole to dS which is interesting
by itself. The interesting questions to ask is how the whole transition rate depends on the values
of the parameters M, HI, HO, . In particular if it prefers transitions to smaller or higher values of
HI for a fixed HO or viceversa. Also analyse the transition rate in the extreme cases H~mI,O ! Mp

from below and M ! Mp from above. This should be done numerically combining the bulk and
the wall contributions to the transition rate.

Insert here Francesco’s plots on the numerical integrations...

6.3 Up-tunneling and Creation from Nothing

Now Brown and Dahlen [5] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point fort the “no-boundary wave
function HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
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Need numerical estimates for wall contribution but the transition is 
allowed however detailed balance is OK only for MD>M (?)

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
=

⌘⇡

2G

1

H2

A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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Figure 3: Penrose diagram of the wall trajectory. The green line is the solution in the case of ↵ = .11H, � =

0.0014H
4
, R⇤ = 0.55H. The blue line corresponds to the case whe M = 0 annd R⇤ = 0.55H. Note that the green

line crosses the dotted line meaning that the wall crosses the horizon of the De Sitter observer
fig:WallTrajectory

Thus in order to determine the curvature of the nucleated spacetime one would have to work out
the consequences having a wall, for instance, the e↵ects of a wall induced anisotropy.

A possible probe of the wall would be to compute the maximum correlation function that lies
within the interior de Sitter spacetime. The correlation function on de Sitter for a massless field
evaluated at equal times but at two di↵erent points (⇢1,⌦1, ⇢2,⌦2) is given by [18],

G(⇢1,⌦1, ⇢2,⌦2) ⇠ H2

✓
1

1� Z
� log(1� Z)

◆
(7.14) {correlation_function}

where Z is the geodesic length between two points, Z = H2⌘abXa(r,⌦)Xb(r0,⌦0). Since we are
interested in correlation functions with O(3) symmetry we have that ⌦ = ⌦0, and we get that

1� Z = sec(T )2(1� cos(r � r0)) (7.15)

From this we see that the log dominates over the first term in the correlation function. Now, when
the wall lies behind the lightcone the maximum value of 1� Z is when ⇢ � ⇢0 = ⇡/2 in which case
the correlation function becomes,

G(r) ⇠ H2 log(sec(T )) ⇠ H3t (7.16)

where in the last line we have used that sec(T ) = cosh(Ht) ⇠ eHt. Of course this is the usual
covariance of a massless field that grows linearly with time until the end of inflation te. Now in the
presence of the wall, if we write r � r0 = ⇡/2��r for ↵ small we get that the correlation function
behaves as,

G(r) ⇠ H2 log(sec(T )(1� cos r)) ⇠ H2(Ht +�r/2 +O(↵2)) (7.17)

which means that however that any e↵ect of the wall is washed away by the expansion. Still, since
inflation is not eternal there is a lower bound on which scales can be access by an observer without
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Wall Trajectory

of the spatial sections of AdS) is not valid since as we saw earlier the FMP bulk contribution is
zero at the tunning points so that the tunneling amplitude is actually finite.

Actually, the limit for HO ! 1 falls beyond the validity of the EFT. However we may consider
it formally by just assuming HO � HI, M, . Simple inspection of equations (3.12) show that the
wall contribution to the action is imaginary and therefore does not contribute to the amplitude and
we are left essentially with the transition determined by the bulk contribution:

B '
⌘⇡

2G
R2

dS =
⌘⇡

2G

1

H2
I

(6.9)

. This is precisely the (log of the) HH (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1) tunneling
factor for creating a universe from nothing!

We could have also seen this naively as follows: take the limit |H2
O| ! 1 first in (3.14) (with

H2
O ! �|H2

O| which gives R0 ! 2/|H2
O|) and then substituting in (??) we get

B !
⌘⇡

G

(�
(|H2

O|)
2
 
2/|H2

O|

4|H2
O|H

2
I

+
1

2

✓
1

H2
I

+ 0

◆)
=

⌘⇡

2G

1

H2
I

. (6.10) {eq:nothing}

Again, we do not need to just set HO ! 1 but just assume that HO � HI, M,  and perform
the integrals numerically. We illustrate this in the figures:

Add figures for this limit

Thus contrary to the claim of [5] we can reproduce the tunneling from nothing picture of HH
and V/L by interpeting nothing as deep AdS as they did! It is interesting to note that even
though the bubble radius goes to zero in this limit (which normally would have been interpreted
as signalling the absence of tunneling) there is a cancellling singularity in B resulting in a finite
tunneling probability.

7 The brane trajectory after nucleation

The metric on the brane is
ds2 = �dt2 + R̂2(t)d⌦2 (7.1) {eq:brane-metric}

The first (energy) integral of the equation of motion for the brane is (from now on we’ll drop the
hat on R in this section since we are just discussing the brane motion),

Ṙ2 + V = �1, (7.2) {eq:brane-eom}

where the potential may be written as

V = �
1

(2R)2
�
(AI � AO) + 2R2

�
+ AI � 1. (7.3) {eq:V}

In the case of interest (i.e, AdS black hole to dS),

AI = 1� H2
I R2, AO = 1�

2GM

R
+ H2

OR2,
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Acceleration:

Note that as T ! ⇡/2 (i.e. in the infinite future) we get
p
1� r02 = HIR⇤

6= 0. i.e. the brane
speed does not reach teh speed of light, as in the BGG case.

As is now well known [16], in the case of dS/dS transition, the wall after nucleation follows a
geodesic in SO(3, 1). This has been to argued that the the spacetime after the foliation is open
since it fits naturally with the picture of the wall never crossing the horizon. The argument for the
wall trajectory relied heavily in the fact that the tangent acceleration in the dS/dS case is always
constant. Here we show that adding a mass to the exterior vacuum changes this pictures allowing
for di↵erent trajectories of the wall. First, let us note that the acceleration of the wall can be
computed from the junction conditions to be [9],

K⌧⌧ = �
R̈ � H2Rp

1� H2R2 + Ṙ2
(7.11)

whose value can be inferred by solving the potential equation for the junction conditions (3.5). In
the case of dS/dS, the solution can be obtained analytically, R = R0 cosh(t/R0) and the acceleration
is constant. In general when there is a mass this does not hold, and we find that the acceleration
is given by,

�K⌧⌧ =

(1�H2
0R

2
⇤)

R2
0

�
↵

2R(⌧)3 �
2�

R(⌧)6r
(1�H2

0R
2
⇤)

R2
0

�
↵

R(⌧)3 �
�

R(⌧)6

(7.12)

where we have used the equation of motion. Ṙ2 + V = �1, Expanding for small ↵HI and �H4
I , we

can write the LHS as,

R̈ � H2Rp
1� H2R2 + Ṙ2

=

p
1� H2

0R2
⇤

R⇤
�

R⇤p
1� H0R2

⇤

✓
↵

R3
�

5

2

�

R6
+O(R3

0↵
2/R6)

◆
(7.13)

From this we see that for small radius the wall initially accelerates/decelerates until R(⌧) grows
large enough such that the acceleration asymptotes to a constant. Notice that in the case that the
mass in the outer region is zero both ↵ and � are zero in which case the acceleration is always
constant as we anticipated. Another feature is that this results do not depend on the outer region
being SdS or AdS and hence this is a feature of the outside region having a mass.

One of the consequences of the change of acceleration is that the wall can now enter into the
comoving horizon of an observer on one of the hemispheres.

This was shown by writing the radius of the wall in global coordinates R(T ) = a(T ) sin(r(T )
as above. We plot the solutions to eqn. (7.10) where we can see that for certain values of ↵ the
wall indeed crosses the lightcone r = T as can be seen from Fig.3. Clearly this is due to the fact
that the worldsheet of the trajectory only has O(3) symmetry and hence it is not so restricted as
in the dS/dS case. This implies that there might well be other trajectories which cross the horizon
from the other hemisphere. Using Euclidean arguments [17] it was suggested that the interior
region had an open de Sitter geometry. Even though it can be argued in the dS/dS case that this
holds naturally since such foliation never crosses the horizon and thus the wall remains outside
the lightcone, we see that when including the mass this argument does not hold. From Lorentzian
arguments there is no preferred foliation as the whole computation only assumes O(3) symmetry.
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From this we see that for small radius the wall initially accelerates/decelerates until R(⌧) grows
large enough such that the acceleration asymptotes to a constant. Notice that in the case that the
mass in the outer region is zero both ↵ and � are zero in which case the acceleration is always
constant as we anticipated. Another feature is that this results do not depend on the outer region
being SdS or AdS and hence this is a feature of the outside region having a mass.

One of the consequences of the change of acceleration is that the wall can now enter into the
comoving horizon of an observer on one of the hemispheres.

This was shown by writing the radius of the wall in global coordinates R(T ) = a(T ) sin(r(T )
as above. We plot the solutions to eqn. (7.10) where we can see that for certain values of ↵ the
wall indeed crosses the lightcone r = T as can be seen from Fig.3. Clearly this is due to the fact
that the worldsheet of the trajectory only has O(3) symmetry and hence it is not so restricted as
in the dS/dS case. This implies that there might well be other trajectories which cross the horizon
from the other hemisphere. Using Euclidean arguments [17] it was suggested that the interior
region had an open de Sitter geometry. Even though it can be argued in the dS/dS case that this
holds naturally since such foliation never crosses the horizon and thus the wall remains outside
the lightcone, we see that when including the mass this argument does not hold. From Lorentzian
arguments there is no preferred foliation as the whole computation only assumes O(3) symmetry.
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Non open universe geodesics !
Observable implications?



Vacuum Transitions

• Euclidean

• No Minkowski to dS

• Open Universe

• Unrelated to V,HH

• Hamiltonian

• BH, Minkowski/AdS to dS

• Closed Universe

• Related to V, HH

Standard Non-Standard

*   Hamiltonian approach only available in minisuperspace or 
transitions without scalar potential



Conclusions

• Hamiltonian approach to quantum transitions

• Minkowski BH and AdS BH to de Sitter not forbidden (no O(4) symmetry)

• Minkowski entropy from Mà0 BH  or |H|à0 AdS and no Hà0 dS!

• Consistent with a closed universe after bubble nucleation (predictions?).

• Wall trajectory not an open universe geodesic

• Up-tunneling from AdS, Minkowski if their entropies vanish!

• Up-tunneling from AdS limit Hà∞ = Hartle-Hawking/Vilenkin from nothing!

• Hartle-Hawking vs Vilenkin (detailed balance)

• Many open questions (very few closed) 
e.g Transition with scalar potentials beyond mini-superspace
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