Quantum Transitions, Detailed Balance, Black Holes and Nothingness

Fernando Quevedo University of Cambridge

PASCOS 2023 University of California, Irvine July 2023

S. Céspedes, S. de Alwis, F. Muia, FQ (to appear)

Also: S. de Alwis, F. Muia, V. Pasquarella, FQ <u>1909.01975</u> S. Céspedes, S. de Alwis, F. Muia, FQ <u>2011.13936</u>, <u>2112.11650</u> V. Pasquarella, FQ <u>2211.07664</u>

Old Question: Vacuum Transitions

Transitions among de Sitter, Minkowski and anti de Sitter spacetimes?

Motivation

- String landscape
- Vacuum transitions: beginning and end of our universe?
- Theoretical 'laboratory' to study quantum

aspects of gravity

Early History

- Coleman de Luccia (1980)
- Witten (1981)
- Vilenkin + Hartle-Hawking (1982-3)
- Brown-Teitelboim (1987)
- Farhi-Guth-Guven (1990)
- Fischler-Morgan-Polchinski (1990)

Euclidean Approach

Wave functions of the universe

Mini-superspace

$$ds^{2} = -N^{2}(t)dt^{2} + a^{2}(t)(dr^{2} + \sin^{2}rd\Omega_{2}^{2})$$

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)

$$\mathcal{P}_{\rm HH}(\text{Nothing} \to dS) = \|\Psi_{\rm HH}(H_{\rm dS})\|^2 \propto e^{\frac{\pi}{GH_{\rm dS}^2}} = e^{+S_{\rm dS}}$$
$$\mathcal{P}_{\rm T}(\text{Nothing} \to dS) = \|\Psi_{\rm T}(H_{\rm dS})\|^2 \propto e^{-\frac{\pi}{GH_{\rm dS}^2}} = e^{-S_{\rm dS}}$$

Two types of vacuum transitions

- 1. Transition between two minima of scalar potential Coleman-De Luccia 1980
- **2.** No scalar field: M_1 to M_1 +Wall+ M_2

Brown-Teitelboim 87

Approximate picture

E true false φ

WKB in Field Theory

Infinite volume: Transition local

Decay rate

$$\Gamma \sim T^2 \sim \frac{1}{\lambda^2} \propto \exp\left(-2\int_b^c \kappa d\tau\right)$$

Euclidean Approach

Coleman et al. (Field theory and Gravity)

O(4) Instanton (bounce)

$$\xi^{2} = |x|^{2} + \tau^{2} \qquad ds^{2} = d\xi^{2} + \rho^{2}(\xi)(d\psi^{2} + \sin^{2}\psi d\Omega_{2}^{2})$$

Analytic continuation O(3,1)

$$ds^{2} = d\tilde{t}^{2} - \tilde{t}^{2} \left[\frac{d\tilde{r}^{2}}{1 + \tilde{r}^{2}} + \tilde{r}^{2} (d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}) \right]$$
$$\equiv d\tilde{t}^{2} - \tilde{t}^{2} \, d\Omega_{T}^{2} \, .$$

Open FLRW geometry!

Euclidean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :

$$\Gamma \sim e^{-B}, \qquad B = S[instanton] - S[background]$$

$$B = \frac{\pi}{2G} \left[\frac{\left[(H_{\rm O}^2 - H_{\rm I}^2)^2 + \kappa^2 (H_{\rm O}^2 + H_{\rm I}^2) \right] R_{\rm o}}{4\kappa H_{\rm O}^2 H_{\rm I}^2} - \frac{1}{2} \left(H_{\rm I}^{-2} - H_{\rm O}^{-2} \right) \right]$$
$$R_{\rm o}^2 = \frac{4\kappa^2}{(H_{\rm O}^2 - H_{\rm I}^2)^2 + 2\kappa^2 (H_{\rm O}^2 + H_{\rm I}^2) + \kappa^4}$$

Vacuum transitions Gravity: Down and Up Tunneling

Lee+ Weinberg

Euclidean CDL

- It reproduces the right decay rate Γ=e^{-B} as WKB and direct extension to field theory and gravity
- After bubble materialisation: Analytic continuation from Euclidean to Lorentzian. Implies open universe but just a "guess" (O(4) symmetry)
- Minkowski to de Sitter: (creating a universe in the lab), singular instanton?

Hamiltonian Approach

Hamiltonian Approach

Fischler, Morgan, Polchinski 1990

Metric
$$ds^2 = -N_t^2(t,r)dt^2 + L^2(t,r)(dr + N_r dt)^2 + R^2(t,r)d\Omega_2^2$$
, Spherically symmetric

Action

$$S_{\text{tot}} = \frac{1}{16\pi G} \int_{\mathcal{M}} d^4 x \sqrt{g} \,\mathcal{R} + \frac{1}{8\pi G} \int_{\partial \mathcal{M}} d^3 y \sqrt{h} \,K + S_{\text{mat}} + S_{\text{W}}$$

$$S_{\rm W} = -4\pi\sigma \int dt dr \,\delta(r-\hat{r}) [N_t^2 - L^2(N_r + \dot{\hat{r}})^2]^{1/2} \qquad S_{\rm mat} = -4\pi \int dt dr \,LN_t R^2 \,\rho(r) \,, \qquad \rho = \Lambda_{\rm O} \,\theta(r-\hat{r}) + \Lambda_{\rm I} \,\theta(\hat{r}-r)$$

Conjugate variables

$$\pi_{L} = \frac{N_{r}R' - \dot{R}}{GN_{t}}R, \qquad \pi_{R} = \frac{(N_{r}LR)' - \partial_{t}(LR)}{GN_{t}},$$
$$\mathcal{H}_{g} = \frac{GL\pi_{L}^{2}}{2R^{2}} - \frac{G}{R}\pi_{L}\pi_{R} + \frac{1}{2G}\left[\left(\frac{2RR'}{L}\right)' - \frac{R'^{2}}{L} - L\right]$$
$$P_{g} = R'\pi_{R} - L\pi'_{L}.$$

Constraints

$$\mathcal{H} = \mathcal{H}_g + 4\pi L R^2 \rho(r) + \delta(r - \hat{r}) E = 0,$$

$$P = P_a - \delta(r - \hat{r}) \hat{p} = 0,$$

$$E = \sqrt{\frac{\hat{p}^2}{\hat{L}^2} + m^2}, \qquad m = 4\pi\sigma\hat{R}^2, \qquad \hat{p} = \partial\mathcal{L}/\partial\dot{\hat{r}}$$

Classical Trajectories

Solutions of constraints

$$\begin{aligned} \pi_L &= \eta \frac{R}{G} \left[\frac{R'^2}{L^2} - A_\alpha \right]^{1/2}, \quad \alpha = 0, \, \mathrm{I}, \quad \eta = \pm 1, \\ A_\alpha &= 1 - \frac{2GM_\alpha}{R} - H_\alpha^2 R^2, \qquad H_\alpha^2 = \frac{8\pi G}{3} \Lambda_\alpha, \\ ds_\alpha^2 &= -A_\alpha(R) \, d\tau^2 + A_\alpha^{-1}(R) \, dR^2 + R^2 \, d\Omega_2^2. \end{aligned}$$

Dynamics

$$\dot{\hat{R}}^2 + V = -1$$
$$V = -\frac{1}{(2\kappa\hat{R})^2} \left((\hat{A}_{\rm I} - \hat{A}_{\rm O}) - \kappa^2 \hat{R}^2 \right)^2 + (\hat{A}_{\rm O} - 1)$$

Matching conditions

$$\frac{\hat{R}}{\hat{L}}(R'(\hat{r}+\epsilon)-R'(\hat{r}-\epsilon)) = -GE,$$

$$\pi_L(\hat{r}+\epsilon)-\pi_L(\hat{r}-\epsilon) = \frac{\hat{p}}{\hat{L}} = 0,$$

Tunneling Probability and WDW

Wheeler DeWitt Equation

WKB

Transition Probability

$$\mathcal{P}(\mathcal{B} \to \mathcal{N}) = \left| \frac{\Psi_{\mathcal{N}}}{\Psi_{\mathcal{B}}} \right|^2 \qquad \mathcal{P}(\mathcal{B} \to \mathcal{N}) \equiv \Gamma_{\mathcal{B} \to \mathcal{N}}$$
$$\mathcal{P}(\mathcal{B} \to \mathcal{N}) \simeq \exp\left[2 \operatorname{Re}\left(I_{\text{tot}}(\mathcal{N}) - I(\mathcal{B}) \right) \right]$$

$$\mathcal{P}(A \to A/B \oplus W) = \frac{|\Psi(A/B \oplus W)|^2}{|\Psi(A)|^2}$$

De Sitter Slicings

From Hamiltonian approach: O(3) symmetry, closed slicing. Universe inside the bubble is closed for global slicing.

Up-Tunneling and Minkowski limit

Detailed balance

$$\Gamma_{\rm up} = \Gamma_{\rm down} \exp\left[\frac{\pi}{G} \left(\frac{1}{H_{\rm I}^2} - \frac{1}{H_{\rm O}^2}\right)\right] = \Gamma_{\rm CDL} \exp\left(S_{\rm I} - S_{\rm O}\right)$$

For HH sign only!

x = surface in the set

De Sitter to Minkowski ?

$$H_I \to 0, \qquad \Gamma_{\rm down} \to \exp\left[-\frac{\pi}{2G} \frac{\kappa^4}{H_O^2 \left(H_O^2 + \kappa^2\right)^2}\right]$$

 $H_O \to 0, \qquad \qquad \Gamma_{\rm up} \to 0$

Schwarzschild to de Sitter (H_o=0)

Farhi, Guth, Guven (Euclidean) + Fischler, Morgan, Polchinski (Hamiltonian)

Zero Schwarzschild mass limit

(Minkowski \approx Schwarzschild in the M=0 limit)

$$\mathcal{P}(\mathcal{M} \to \mathcal{M}/\mathrm{dS} \oplus \mathrm{W}) = \exp\left[\frac{\eta \pi}{GH^2} \left(1 - \frac{\kappa^4}{(H^2 + \kappa^2)^2}\right)\right]$$

$$\mathcal{P}(dS \to dS/\mathcal{M} \oplus W) = \exp\left[\frac{\eta \pi}{GH^2} \left(-\frac{\kappa^4}{(H^2 + \kappa^2)^2}\right)\right]$$
 Dov

Up-tunneling

Down-tunneling

Detailed Balance

M=0 Schwarzschild ≠ H=0 de Sitter (Difference on background wave function)

Bubble Trajectory

Asymptotic speed= speed of light – $(M/M_P)^2 < c!$

Even though calculation done in global slicing, trajectories follow geodesics of open slicing

AdS to AdS

$$B = -\frac{\eta\pi}{2G} \left[\frac{\left(|H_I^2| - |H_O^2| \right)^2 - \kappa^2 \left(|H_I^2| + |H_O^2| \right)}{2\kappa |H_I^2| |H_O^2|} R_0 - \left(\frac{1}{|H_O^2|} - \frac{1}{|H_I^2|} \right) \right]$$

$$\mathcal{P}_{up}^{AdS \to AdS} = \mathcal{P}_{down}^{AdS \to AdS},$$

Detailed balance if Entropy of AdS = 0 !

Minkowski to AdS

$$H_0 \to 0 \qquad B = 2\left(I_{\text{tot}}|_{\text{tp}} - \bar{I}\right) = -\frac{\eta\pi}{2G|H_I|^2} \left[\frac{2\kappa^4}{\left(|H_I|^2 - \kappa^2\right)^2}\right],$$

As in CDL

AdS to dS

$$B^{\text{AdS}->\text{dS}} = \frac{\eta\pi}{G} \left\{ \frac{\left\{ (|H_B^2| + H_A^2)^2 + \kappa^2 (-|H_B^2| + H_A^2) \right\} R_{\text{o}}}{4\kappa |H_B^2| H_A^2} + \frac{1}{2} \left(\frac{1}{H_A^2} - \frac{1}{|H_B^2|} \right) \right\},$$
$$\frac{P^{\text{AdS}->\text{dS}}}{P^{\text{dS}->\text{AdS}}} = \frac{e^{B^{\text{AdS}->\text{dS}}}}{e^{B^{\text{dS}->\text{AdS}}}} = \frac{\exp\left(\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)}{\exp\left(-\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)} = e^{\eta(S_{\text{dS}}-(S_{\text{AdS}}=0))},$$

Detailed balance if AdS entropy=0!

Minkowski limit from dS blows-up but from AdS is finite!?

To Nothingness and Back?

For SAdS to dS $H_{\rm O} \gg H_{\rm I}, M, \kappa$

$$B^{\text{AdS}}_{\text{extra dimensions}} \xrightarrow{\eta \pi}{G} \left\{ \frac{\left\{ (|H_B^2|)^2 \right\} 2\kappa / |H_B^2|}{4\kappa |H_B^2| H_A^2} + \frac{1}{2} \left(\frac{1}{H_A^2} + 0 \right) \right\} = \frac{\eta \pi}{2G} \frac{1}{H_A^2} \frac{$$

The same as Vilenkin, Hartle-Hawking wave functions!

extra dimensions

r \approx Brown-Dahlen: **Nothing as AdS** $H_{\rm O} \rightarrow \infty$ r extra dimensions r

General: S(A)dS to S(A)dS

Total Action

$$I_{\rm tot} = I_{\rm B} + I_{\rm W}$$

$$I_{\rm B} = \frac{\eta}{G} \int_0^{\hat{r}-\epsilon} dr R \left[\sqrt{A_{\rm I} L^2 - R'^2} - R' \cos^{-1} \left(\frac{R'}{L\sqrt{A_{\rm I}}} \right) \right] + \int_{\hat{r}+\epsilon}^{\pi} dr \ [{\rm I} \to {\rm O}] \ ,$$
$$I_{\rm W} = \frac{\eta}{G} \int \delta \hat{R} \, \hat{R} \cos^{-1} \left(\frac{R'}{L\sqrt{\hat{A}}} \right) \Big|_{\hat{r}-\epsilon}^{\hat{r}+\epsilon},$$

$$\begin{split} I_{\rm W} &= -\frac{\eta}{G} \int dRR \cos^{-1} \left(\frac{\frac{2G}{R} (M_{\rm O} - M_{\rm I}) + R^2 (\pm H_{\rm O}^2 \mp H_{\rm I}^2 - \kappa^2)}{2\kappa R \sqrt{1 - \frac{2GM_{\rm O}}{R} \mp H_{\rm O}^2 R^2}} \right) \\ &+ \frac{\eta}{G} \int dRR \cos^{-1} \left(\frac{\frac{2G}{R} (M_{\rm O} - M_{\rm I}) + R^2 (\pm H_{\rm O}^2 \mp H_{\rm I}^2 + \kappa^2)}{2\kappa R \sqrt{1 - \frac{2GM_{\rm I}}{R} \mp H_{\rm I}^2 R^2}} \right) \,. \end{split}$$

Wall integrals cannot be done analytically but symmetric under

Bulk Contributions

SdS to SdS

B

Turning point geometry
$$\pi_{\rm L} = 0$$
 $\frac{R'^2}{L^2} = A(R) = 1 - \frac{2MG}{R} - H^2 R^2$ $I_{\rm B} \propto \int R dR \Theta(-R')$

$$I_{\rm B} \begin{bmatrix} \hat{R} \end{bmatrix} = \frac{\eta \pi}{2G} \left[\theta(-\hat{R}'_{-}) \left(R_{I,c}^{2} - \hat{R}^{2} \right) + \theta(-\hat{R}'_{+}) \left(\hat{R}^{2} - R_{O,s}^{2} \right) \right] + \frac{\eta \pi}{2G} \left[\theta(\hat{R}'_{+}) \left(R_{O,c}^{2} - \hat{R}^{2} \right) + \theta(\hat{R}'_{-}) \left(\hat{R}^{2} - R_{I,s}^{2} \right) \right].$$
$$I_{\rm B} \begin{bmatrix} R_{2} \end{bmatrix} = \frac{\eta \pi}{2G} \left[\left(R_{I,c}^{2} - R_{O,s}^{2} \right) \right], I_{\rm B} \begin{bmatrix} R_{1} \end{bmatrix} = \frac{\eta \pi}{2G} \left[\left(R_{O,c}^{2} - R_{I,s}^{2} \right) \right]$$

$$\Rightarrow \mathbf{A} \mathbf{vs} \mathbf{A} \Rightarrow \mathbf{B}$$

$$P_{\uparrow} \left(\hat{R} \right) = \frac{|a|^2 e^{2I_{\mathrm{Bu}}^{AB} \left(\hat{R} \right) + 2I_{\mathrm{W}}^{AB} \left(\hat{R} \right)} + \dots}{|a|^2 e^{2I_{\mathrm{Bu}}^{AB} \left(R_1 \right) + 2I_{\mathrm{W}}^{AB} \left(R_1 \right)} + \dots}, \ P_{\downarrow} \left(\hat{R} \right) = \frac{|a|^2 e^{2I_{\mathrm{Bu}}^{BA} \left(\hat{R} \right) + 2I_{\mathrm{W}}^{BA} \left(\hat{R} \right)} + \dots}{|a|^2 e^{2I_{\mathrm{Bu}}^{BA} \left(R_1 \right) + 2I_{\mathrm{W}}^{AB} \left(R_1 \right)} + \dots}$$

$$\frac{P_{\uparrow}}{P_{\downarrow}} = e^{\frac{\pi}{G} \left[\left(R_{B,c}^2 - R_{A,s}^2 \right) - \left(R_{A,c}^2 - R_{B,s}^2 \right) \right]} = e^{S_B - S_A}$$

SAdS to dS

$$I_{\rm B}\Big|_{\rm tp} \equiv I_{\rm B}\Big|_{R_{\rm I}}^{R_{\rm O}} = \begin{cases} \frac{\eta\pi}{2G} (R_{\rm O}^2 - R_{\rm I}^2) \,, & M > M_{\rm S} \,, \\ \frac{\eta\pi}{2G} (R_{\rm O}^2 - R_{\mathcal{S}}^2) \,, & M_{\rm S} > M > M_{\rm D} \\ \frac{\eta\pi}{2G} (R_{\rm dS}^2 - R_{\mathcal{S}}^2) \,, & M_{\rm D} > M \,. \end{cases}$$

$$M_{\rm S} = \frac{H_{\rm O}^2 + H_{\rm I}^2 + \kappa^2}{2G \left(H_{\rm I}^2 + \kappa^2\right)^{3/2}}, \qquad \qquad M_{\rm D} = \frac{H_{\rm O}^2 + H_{\rm I}^2 - \kappa^2}{2G H_{\rm I}^3},$$

Need numerical estimates for wall contribution but the transition is allowed however detailed balance is OK only for $M_D>M$ (?)

$$\frac{P^{\text{AdS}->\text{dS}}}{P^{\text{dS}->\text{AdS}}} = \frac{e^{B^{\text{AdS}->\text{dS}}}}{e^{B^{\text{dS}->\text{AdS}}}} = \frac{\exp\left(\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)}{\exp\left(-\frac{\eta\pi}{2G}\frac{1}{H_A^2}\right)} = e^{\eta(S_{\text{dS}}-(S_{\text{AdS}}=0))},$$

Wall Trajectory

$$ds^2 = -dt^2 + \hat{R}^2(t)d\Omega^2$$

Acceleration:

Vacuum Transitions

Standard

Non-Standard

- Euclidean
 Hamiltonian
- No Minkowski to dS
- BH, Minkowski/AdS to dS
- Open Universe
 Closed Universe
- Unrelated to V,HH Related to V, HH
- * Hamiltonian approach only available in minisuperspace or transitions without scalar potential

Conclusions

- Hamiltonian approach to quantum transitions
- Minkowski BH and AdS BH to de Sitter not forbidden (no O(4) symmetry)
- Minkowski entropy from $M \rightarrow 0$ BH or $|H| \rightarrow 0$ AdS and no $H \rightarrow 0$ dS!
- Consistent with a closed universe after bubble nucleation (predictions?).
- Wall trajectory not an open universe geodesic
- Up-tunneling from AdS, Minkowski if their entropies vanish!
- Up-tunneling from AdS limit $H \rightarrow \infty$ = Hartle-Hawking/Vilenkin from nothing!
- Hartle-Hawking vs Vilenkin (detailed balance)
- Many open questions (very few closed)

e.g Transition with scalar potentials beyond mini-superspace

