Disentangling the flavor puzzle with strings

Saúl Ramos-Sánchez

PASCOS 2023

June 29, 2023

From collaborations with

- V. Knapp-Pérez, X-G. Liu, H.P. Nilles & M. Ratz: 2304.14437
- A. Baur, H.P. Nilles, A. Trautner & P. Vaudrevange: 2112.06940, 2207.10677
- M-C. Chen & M. Ratz: 1909.06910
- Y. Olguín-Trejo & R. Pérez-Martínez: 1808.06622

Flavor puzzle

Despite the great success of the SM

 Need to explain
 three flavors of SM particles observed mass hierarchies observed quark and lepton mixing textures CP violation in CKM and PMNS neutrino nature and mass generation

$$\left(\begin{array}{cccc} 0.974 & 0.224 & 0.0039 \\ 0.218 & 0.997 & 0.042 \\ 0.008 & 0.039 & 1.019 \end{array} \right)_{CKM}, \qquad \left(\begin{array}{cccc} 0.829 & 0.539 & 0.147 \\ 0.493 & 0.584 & 0.645 \\ 0.262 & 0.607 & 0.75 \end{array} \right)_{PMNS}$$

$$\begin{split} m_{u_i} &\sim 2.16, 1270, 172900 \; {\rm MeV} & \Delta m_{21}^2 = 7.4 \cdot 10^{-5}, \Delta m_{31(23)}^2 \approx 2.5 \cdot 10^{-3} \; {\rm eV}^2 \\ m_{d_i} &\sim 4.67, 93, 4180 \; {\rm MeV} & m_{e_i} \sim 0.511, 105.7, 1776.9 \; {\rm MeV} \end{split}$$

normal ordering

[Talks by Heeck and Medina (Tuesday)]

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

[Talk by Medina]

Matter fields transform as

$$\rightarrow \underbrace{\rho_{\phi}(g)}{\rho_{\phi}(g)} \phi, \quad g \in G_{flavor} = S_3, A_4$$

rep of g

Saúl Ramos-Sánchez (UNAM)

The flavor puzzle with strings

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talk by Medina]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) Feruglio (2017) [& his talk] $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \mathrm{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talk by Medinal]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) Feruglio (2017) [& his talk] $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \mathrm{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow \underbrace{(cT+d)^{n_\phi}}_{\phi} \rho_\phi(\gamma) \phi$

automorphy

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talk by Medinal]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) Feruglio (2017) [& his talk] $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \mathrm{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

 \Rightarrow finite modular groups Γ_N = modular flavor symmetry $G_{modular}$

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talk by Medinal]

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 5 $n_Y \in 2\mathbb{Z}$ (and n_{ϕ} arbitrary)

 \Rightarrow 9 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters!

Kähler modular problem

Typically, Kähler potential (kinetic terms) are chosen canonical

$$K \supset \sum_{\phi} (-\mathrm{i}T + \mathrm{i}T)^{n_{\phi}} |\phi|^2$$

BUT modular invariance \rightarrow many new terms altering predictions B. E.g.

What are the flavor ingredients that strings offer?

- Top-down completion/motivation?
- Additional constraints?
- Guiding principle to solving open questions?

Stringy ingredients

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$

- SUGRA & 10D space-time
 → compactify 6D on spaces with shapes and sizes set by moduli
- 4D matter fields get all their properties from string features
 → <u>all</u> charges (e.g. modular weights) are fixed
 e.g. modular weights in Ibáñez, Lüst (1992)

6 6

- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable <u>modular forms</u>

Hamidi, Vafa (1987); Lauer, Mas, Nilles (1989-90); Erler, Jungnickel, Spalinski, Stiberger (1992)

2D $\mathbb{T}^2/\mathbb{Z}_N$ heterotic orbifolds and G_{flavor}

Kobayashi, Nilles, Plöger, Raby, Ratz (2006); Olguín-Trejo, Pérez-Martínez, SRS (2018)

2D $\mathbb{T}^2/\mathbb{Z}_N$ heterotic orbifolds and G_{flavor}

• Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor}

B: stringy modular symmetries $\rightarrow G_{modular} = \Gamma_N, \Gamma'_N, \dots$

(In fact, A&B = outer automorphisms of orbifold *space group* in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

• Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor} B: stringy modular symmetries $\rightarrow G_{modular} = \Gamma_N, \Gamma'_N, \dots$ (In fact, A&B = outer automorphisms of orbifold space group in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

• Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor} B: stringy modular symmetries $\rightarrow G_{modular} = \Gamma_N, \Gamma'_N, \ldots$ (In fact, A&B = outer automorphisms of orbifold space group in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

• Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor} B: stringy modular symmetries $\rightarrow G_{modular} = \Gamma_N, \Gamma'_N, \ldots$ (In fact, A&B = outer automorphisms of orbifold space group in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

eclectic flavor $= A \cup B$ with $B \subset \text{Out}(A)$ (multiplicative closure) e.g. in $\mathbb{T}^2/\mathbb{Z}_3$, eclectic flavor $= \Delta(54) \cup T'$ with $T' \subset \text{Out}(\Delta(54))$

• Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor} B: stringy modular symmetries $\rightarrow G_{modular} = \Gamma_N, \Gamma'_N, \dots$ (In fact, A&B = outer automorphisms of orbifold space group in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

eclectic flavor $= A \cup B$ with $B \subset \operatorname{Out}(A)$ (multiplicative closure) e.g. in $\mathbb{T}^2/\mathbb{Z}_3$, eclectic flavor $= \Delta(54) \cup T'$ with $T' \subset \operatorname{Out}(\Delta(54))$ Advantage vs pure modular symmetries: kinetic terms (Kähler potential) under full control! \bigcirc i.e. Kähler modular problem solved automatically due to G_{flavor} ! \bigcirc (recall: modular weights and charges are not arbitrary here! \bigcirc) MSSM with stringy flavor

Flavor in

semi-realistic orbifold models

Baur, Nilles, SRS, Trautner, Vaudrevange: 2112.06940, 2207.10677

• Has a $\mathbb{T}^2/\mathbb{Z}_3$ sector with $\Delta(54) \cup T'$

and only few (not ad hoc) representations for quarks and leptons, e.g.:

		quarks and leptons							
label	q	ū	đ	l	ē	$\bar{\nu}$	H _u	$H_{\rm d}$	
$SU(3)_c$	3	3	3	1	1	1	1	1	
$SU(2)_L$	2	1	1	2	1	1	2	2	
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	0	1/2	-1/2	
$\Delta(54)$	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	1	1	
T'	$\mathbf{2'} \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	
n	-2/3	-2/3	-2/3	-2/3	-2/3	-2/3	0	0	

Baur, Nilles, SRS, Trautner, Vaudrevange (2112.06940, 2207.10677)

• Has a $\mathbb{T}^2/\mathbb{Z}_3$ sector with $\Delta(54) \cup T'$

and only few (not ad hoc) representations for quarks and leptons, e.g.: Baur, Nilles, SRS, Trautner, Vaudrevange (2112.06940, 2207.10677)

		quarks and leptons							
label	q	ū	đ	l	ē	$\bar{\nu}$	Hu	$H_{\rm d}$	
$SU(3)_c$	3	3	3	1	1	1	1	1	
$SU(2)_L$	2	1	1	2	1	1	2	2	
$\mathrm{U}(1)_Y$	1/6	-2/3	1/3	-1/2	1	0	1/2	-1/2	
$\Delta(54)$	32	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	1	1	
T'	$2' \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	
n	-2/3	-2/3	-2/3	-2/3	-2/3	-2/3	0	0	

• flavons break the eclectic symmetry

		flav	ons				
φ_{e}	φ_{u}	φ_{ν}	ϕ^0	ϕ_{M}^{0}	$\phi_{\rm e}^0$	ϕ_{u}^{0}	$\phi_{\rm d}^0$
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
3_2	3_2	3 ₂	1	1	1	1	1
$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	1	1	1
-2/3	-2/3	-2/3	0	0	0	0	0

• Has a $\mathbb{T}^2/\mathbb{Z}_3$ sector with $\Delta(54)\cup T'$

and only few (not ad hoc) representations for quarks and leptons, e.g.: Baur, Nilles, SRS, Trautner, Vaudrevange (2112.06940, 2207.10677)

		quarks and leptons							
label	q	ū	đ	l	ē	$\bar{\nu}$	Hu	$H_{\rm d}$	
$SU(3)_c$	3	3	3	1	1	1	1	1	
$SU(2)_L$	2	1	1	2	1	1	2	2	
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	0	1/2	-1/2	
$\Delta(54)$	32	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	1	1	
T'	$2' \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	
n	-2/3	-2/3	-2/3	-2/3	-2/3	-2/3	0	0	

• flavons break the eclectic symmetry

		flav	ons				
$\varphi_{ m e}$	φ_{u}	φ_{ν}	ϕ^0	$\phi_{\rm M}^0$	ϕ_{e}^{0}	ϕ_{u}^{0}	$\phi_{\rm d}^0$
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
3_2	3_2	3 ₂	1	1	1	1	1
$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	1	1	1
-2/3	-2/3	-2/3	0	0	0	0	0

$$\begin{array}{c} \textbf{eclectid} \longrightarrow \langle T \rangle = i \infty \longrightarrow \begin{pmatrix} H(3,2,1) \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \longrightarrow \begin{bmatrix} \mathbb{Z}_3^{(2)} \times \mathbb{Z}_3^{(3)} \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_1 \\ 0 \\ 1 \end{pmatrix} \longrightarrow \begin{bmatrix} 2 \\ 3 \\ - \langle \varphi \rangle = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ - \langle \varphi \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ - \langle$$

The flavor puzzle with strings

After

- $\bullet\,$ writing the corresponding action, \mathcal{W}, K
- fitting the value of the modulus ($\langle T \rangle \sim 3i$ close to $i\infty$), and
- computing effective particle interactions (with 20 params)

After

- $\bullet\,$ writing the corresponding action, \mathcal{W}, K
- fitting the value of the modulus ($\langle T \rangle \sim 3i$ close to $i\infty$), and
- computing effective particle interactions (with 20 params)

Predictions:

	observable	model best fit	exp. best fit	exp. 1σ interval
	$m_{ m u}/m_{ m c}$	0.00193	0.00193	$0.00133 \rightarrow 0.00253$
	$m_{ m c}/m_{ m t}$	0.00280	0.00282	$0.00270 \rightarrow 0.00294$
or	$m_{ m d}/m_{ m s}$	0.0505	0.0505	$0.0443 \rightarrow 0.0567$
sect	$m_{ m s}/m_{ m b}$	0.0182	0.0182	$0.0172 \to 0.0192$
ark	ϑ_{12} [deg]	13.03	13.03	$12.98 \rightarrow 13.07$
nb	ϑ_{13} [deg]	0.200	0.200	$0.193 \rightarrow 0.207$
	ϑ_{23} [deg]	2.30	2.30	$2.26 \rightarrow 2.34$
	$\delta^{\mathbf{q}}_{\mathcal{CP}}$ [deg]	69.2	69.2	66.1 ightarrow 72.3
	$m_{ m e}/m_{\mu}$	0.00473	0.00474	$0.00470 \rightarrow 0.00478$
	$m_\mu/m_ au$	0.0586	0.0586	$0.0581 \to 0.0590$
	$\sin^2 \theta_{12}$	0.303	0.304	$0.292 \rightarrow 0.316$
	$\sin^2 \theta_{13}$	0.0225	0.0225	$0.0218 \rightarrow 0.0231$
	$\sin^2 \theta_{23}$	0.449	0.450	$0.434 \rightarrow 0.469$
	δ^{ℓ}_{CP}/π	1.28	1.28	$1.14 \rightarrow 1.48$
	η_1/π	0.029	-	8
OL	η_2/π	0.994	14	12 I
sect	J_{CP}	-0.026	-0.026	$-0.033 \rightarrow -0.016$
ton	J_{CP}^{\max}	0.0335	0.0336	$0.0329 \rightarrow 0.0341$
lep	$\Delta m_{21}^2/10^{-5} \ [eV^2]$	7.39	7.42	$7.22 \rightarrow 7.63$
	$\Delta m_{31}^2 / 10^{-3} [\text{eV}^2]$	2.521	2.510	$2.483 \rightarrow 2.537$
	m_1 [eV]	0.0042	< 0.037	
	$m_2 [eV]$	0.0095	12	12
	m_3 [eV]	0.0504	-	× .
	$\sum_{i} m_i [eV]$	0.0641	< 0.120	2
	$m_{\beta\beta}$ [eV]	0.0055	< 0.036	3
	$m_{\beta} [\mathrm{eV}]$	0.0099	< 0.8	12
	χ^2	0.11		

Baur, Nilles, SRS, Trautner, Vaudrevange (2207.10677)

Bottom-up quasi-eclectic symmetries for model building

Quasi-Eclectic realization

of a simple lepton model

Chen, Knapp-Pérez, Ramos-Hamud, SRS, Ratz, Shukla: 2108.02240

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: quasi-eclectic picture $G_{modular} \times G_{flavor}$

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	z, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor}

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	z, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor} Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$

		C	hen, Kn	app-Pére	ez, Rai	nos-Ha	mud, Sf	RS, Ratz	z, Shukla	(202)
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor} Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$

Saúl Ramos-Sánchez (UNAM)

Moduli stabilization and phenomenology

with matter fields

Knapp-Pérez, Liu, Nilles, SRS, Ratz: 2304.14437

String-inspired scheme to arrive at the right corner

• Fits for pheno lead to T close to ${\rm i}, \omega = e^{2\pi {\rm i}/3}, {\rm i}\infty$ & in AdS

Feruglio, Gherardi, Romanino (2021); Feruglio (2022-23); Petcov, Tanimoto (2022-23)

- Need a mechanism to arrive at such the vacua and uplift them
- Our model
 - Modulus is stabilized exactly at sym. enhanced points in moduli space
 - Matter field VEVs $\langle \phi
 angle$ break modular symmetry
 - (e.g. by cancellation of the field-dependent FI term)
 - Uplift the vacuum getting a bit away, e.g. à la ISS

String-inspired scheme to arrive at the right corner

• Fits for pheno lead to T close to ${\rm i}, \omega = e^{2\pi {\rm i}/3}, {\rm i}\infty$ & in AdS

Feruglio, Gherardi, Romanino (2021); Feruglio (2022-23); Petcov, Tanimoto (2022-23)

- Need a mechanism to arrive at such the vacua and uplift them
- Our model
 - Modulus is stabilized exactly at sym. enhanced points in moduli space
 - Matter field VEVs $\langle \phi
 angle$ break modular symmetry

(e.g. by cancellation of the field-dependent FI term)

• Uplift the vacuum getting a bit away, e.g. à la ISS

$$K = -\ln(S + \overline{S}) - 3\ln(-\mathrm{i}T + \mathrm{i}\overline{T})$$

$$\begin{aligned} \mathcal{W} &= \left(c_1 + c_2 \,\eta^{2k_c}(T) - B \,\mathrm{e}^{-bS} \right) \frac{H(T)}{\eta^6(T)} \\ &\text{with} \quad H(T) = \left(\frac{E_4(T)}{\eta^8(T)}\right)^n \left(\frac{E_6(T)}{\eta^{12}(T)}\right)^m \end{aligned}$$

String-inspired scheme to arrive at the right corner

• Fits for pheno lead to T close to ${\rm i}, \omega = e^{2\pi {\rm i}/3}, {\rm i}\infty$ & in AdS

Feruglio, Gherardi, Romanino (2021); Feruglio (2022-23); Petcov, Tanimoto (2022-23)

- Need a mechanism to arrive at such the vacua and uplift them
- Our model
 - Modulus is stabilized exactly at sym. enhanced points in moduli space
 - Matter field VEVs $\langle \phi
 angle$ break modular symmetry

(e.g. by cancellation of the field-dependent FI term)

• Uplift the vacuum getting a bit away, e.g. à la ISS

$$K = -\ln(S+\overline{S}) - 3\ln(-\mathrm{i}T+\mathrm{i}\overline{T}) + (-\mathrm{i}T+\mathrm{i}\overline{T})^{-k_X}\overline{X}X - (-\mathrm{i}T+\mathrm{i}\overline{T})^{-2k_X}\frac{(XX)^2}{\Lambda_{\mathrm{ISS}}^2}$$

$$\mathcal{W} = \left(c_1 + c_2 \eta^{2k_c}(T) - B e^{-bS} + f_X \eta^{2(k_Y + k_X)}(T)X\right) \frac{H(T)}{\eta^6(T)}$$

with $H(T) = \left(\frac{E_4(T)}{\eta^8(T)}\right)^n \left(\frac{E_6(T)}{\eta^{12}(T)}\right)^m$

Explicit vacua

• Parameters for vacua close to T = i

 $(m = 0, n = 1, c_1 = 2 \times 10^{-8}, k_c = 1, k_X = 0, b = 10, B = 1, \Lambda_{\text{ISS}} = 10^{-9})$

<i>c</i> ₂	f_X	k_Y	T	$\langle \mathscr{V} \rangle$
0	0	0	i	< 0
≠ 0	0	0	-0.014 + 1.015 i	< 0
0	$3.49 \cdot 10^{-8}$	0	i	$\simeq 0$
0	$6 \cdot 10^{-8}$	1	1.010 i	$\simeq 0$
≠ 0	$5 \cdot 10^{-8}$	0	-0.018 + 1.011 i	$\simeq 0$
≠ 0	$8.5 \cdot 10^{-8}$	1	-0.018 + 1.021 i	$\simeq 0$

Explicit vacua

• Parameters for vacua close to T = i

 $(m = 0, n = 1, c_1 = 2 \times 10^{-8}, k_c = 1, k_X = 0, b = 10, B = 1, \Lambda_{\text{ISS}} = 10^{-9})$

<i>c</i> ₂	f_X	k _Y	T	$\langle \mathscr{V} \rangle$
0	0	0	i	< 0
≠ 0	0	0	-0.014 + 1.015 i	< 0
0	$3.49 \cdot 10^{-8}$	0	i	$\simeq 0$
0	$6 \cdot 10^{-8}$	1	1.010 i	$\simeq 0$
≠ 0	$5 \cdot 10^{-8}$	0	-0.018 + 1.011 i	$\simeq 0$
≠ 0	$8.5 \cdot 10^{-8}$	1	-0.018 + 1.021 i	$\simeq 0$

Concluding remarks

In summary
• Flavor puzzle: number, masses and mixings of fermions

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...
- Toroidal orbifold compactifications of string theory reveal an <u>eclectic</u> flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Consequences for flavor in explicit constructions are studied

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Consequences for flavor in explicit constructions are studied
- Interesting predictions on neutrino physics
 Caveat: some free parameters, less than the number of predictions

- Flavor puzzle: number, masses and mixings of fermions
- String theory: offers useful symmetries and constraints. E.g. Metaplectic symmetries [see Knapp-Pérez talk], Siegel sym. [see Nilles talk],...
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Consequences for flavor in explicit constructions are studied
- Interesting predictions on neutrino physics
 Caveat: some free parameters, less than the number of predictions
- Available stringy mechanism to stabilize moduli away from AdS Challenge: finding it in actual string models

Just in case...

Backup slides

Stringy Siegel Flavor Symmetries

Siegel modular flavor group

from string theory

Baur, Kade, Nilles, SRS, Vaudrevange: 2008.07534, 2012.09586, 2104.03981

Siegel modular symmetries from $\mathbb{T}^2/\mathbb{Z}_2$

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!
- The resulting modular symmetry is

 $\operatorname{Sp}(4,\mathbb{Z}) \supset \operatorname{SL}(2,\mathbb{Z})_U \times \operatorname{SL}(2,\mathbb{Z})_T$

Linearly realized as $G_{modular} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M$

• Eclectic structure: $G_{eclectic} = G_{flavor} \rtimes G_{modular}$, order = 4608

bottom-up and top-down phenomenology unexplored !!

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = \mathbb{1} \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $\mathrm{SL}(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

$$\begin{split} \Gamma'_N &= \left\langle \mathbf{S}, \mathbf{T} \mid \mathbf{S}^4 = (\mathbf{S}\mathbf{T})^3 = T^N = \mathbb{1}, \quad \mathbf{S}^2\mathbf{T} = \mathbf{T}\mathbf{S}^2, \qquad N = 2, 3, 4, 5 \right\rangle \\ \Gamma'_2 &\cong S_3, \ \Gamma'_3 \cong T', \ \Gamma_4 \cong \mathrm{SL}(2, 4), \ \Gamma_5 \cong \mathrm{SL}(2, 5), \dots \\ & \text{e.g. Liu, Ding (2019)} \end{split}$$

Finite modular subgroups: $\Gamma_N \cong PSL(2,\mathbb{Z})/\overline{\Gamma}(N)$ (PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z})/{±1})

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = 1, N = 2, 3, 4, 5 \rangle$$

 $\Gamma_2 \cong S_3, \ \Gamma_3 \cong A_4, \ \Gamma_4 \cong S_4, \ \Gamma_5 \cong A_5, \dots, \Gamma_7 \cong \Sigma(168), \dots$

e.g. de Adelhaart, Feruglio, Hagedorn (2011)

Thus far, models with modular flavor symmetries are supersymmetric

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e, \mu, \tau)^T, (u, c, t)^T, \ldots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i}

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are modular forms

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are *modular forms*

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $ho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$ Admissible iff

$$W(\Phi_{n_1},\ldots) \xrightarrow{\gamma} (cT+d)^{-1} \mathbb{1} W(\Phi_{n_1},\ldots), \qquad \text{i.e. } n_Y + \sum n_i = -1, \quad \prod \rho(\gamma) = 1$$

Note the nontrivial *automorphy factor* $(cT+d)^{-1} \rightarrow W$ covariant

How to proceed with modular flavor symmetries

- Take your favorite symmetry: $G_{mod} = \Gamma_N \in \{S_3, A_4, S_4, A_5, \ldots\}$
- $\bullet\,$ Choose your favorite representations $\rho(\gamma)$ for quark and lepton fields

e.g. quark doublets Q as 3 or $\mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}''$ of $\Gamma_3 \cong A_4, \dots$

- Pick your favorite modular weights n_i and n_Y
- Write your G_{mod} -covariant superpotential W

e.g.
$$W \supset \hat{Y}^u H_u Q \bar{u} + \hat{Y}^d H_d Q \bar{d} + \hat{Y}^e H_d L \bar{e} + \frac{\hat{Y}}{\Lambda} L H_u L H_u$$

- Take your favorite inv. Kähler potential K; typical choice $K=\sum |\Phi_{n_i}|^2$ MANY other modular invariant K possible! - Chen, SR-S, Ratz (1909.06910)
- Choose a $\langle T \rangle \neq 0 \quad \rightarrow \quad$ nontrivial rep. of $\hat{Y}(\langle T \rangle)$ breaks G_{mod}
- EW breakdown with $\langle H_u \rangle, \langle H_d \rangle \neq 0$
- Diagonalize quark and lepton matrices to compute V_{CKM} and U_{PMNS} and adjust only $\langle T \rangle$ to data

From top-down to bottom-up

eclectic flavor symmetries

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Recipe to get the eclectic flavor group associated with a G_{flavor} : • Determine $Out(G_{flavor})$

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$
- Verify whether there is a third (class-inverting) outer automorphism that act as a Z₂ CP-like transformation to further enhance the eclectic flavor symmetry

flavor group	GAP	$\operatorname{Aut}(\mathcal{G}_{\mathrm{fl}})$	finite modular		eclectic flavor
$\mathcal{G}_{\mathrm{fl}}$	ID		groups		group
Q_8	[8, 4]	S_4	without \mathcal{CP}	S_3	GL(2,3)
0500345			with \mathcal{CP}	s - 5	
$\mathbb{Z}_3 imes \mathbb{Z}_3$	[9, 2]	GL(2,3)	without \mathcal{CP}	S_3	$\Delta(54)$
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]
A_4	[12, 3]	S_4	without \mathcal{CP}	S_3	S_4
				S_4	S_4
17			with \mathcal{CP}		
T'	[24, 3]	S_4	without \mathcal{CP}	S_3	GL(2,3)
			with \mathcal{CP}	19-11	
$\Delta(27)$	[27, 3]	[432, 734]	without \mathcal{CP}	S_3	$\Delta(54)$
122 22				T'	$\Omega(1)$
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]
				GL(2,3)	[1296, 2891]
$\Delta(54)$	[54, 8]	[432, 734]	without \mathcal{CP}	T'	$\Omega(1)$
			with \mathcal{CP}	GL(2,3)	[1296, 2891]

Nilles, SR-S, Vaudrevange (2001.01736)

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

More interestingly

$$K = -\log(-iT + iT) + \sum_{i} (-iT + iT)^{-2/3} |\Phi_{-2/3}^{i}|^{2}$$

Only canonical terms are allowed

 \rightarrow predictability of bottom-up models with Γ'_N recovered! \bigcirc

Nilles, SRS, Vaudrevange (2004.05200)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta=\mathbb{Z}_3)$ on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}_R^2 \otimes \mathbb{R}_L^2) / S_{Narain}$$

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

Use Narain formalism: split string in independent components

$$X(au, \sigma) = X_R(\sigma - au) + X_L(\sigma + au)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta=\mathbb{Z}_3)$ on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

What are the outer automorphisms of $S_{Narain} = \{g\}$?

$$Out(S_{Narain}) = \left\{ h = (\Sigma, t) \notin S_{Narain} \mid hgh^{-1} \in S_{Narain} \right\}$$

Rotations: $h_{\Sigma} = (\Sigma, 0) \rightarrow O(2, 2; \mathbb{Z})$, Translations: $h_t = (\mathbb{1}_4, t)$

Towards the *eclectic* picture: what $Out(S_{Narain})$ is

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Towards the *eclectic* picture: what $Out(S_{Narain})$ is

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!
String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	\mathbf{S}_T	T_T	Μ	K_*
 $U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$
Rec	all: in S	$\mathrm{L}(2,\mathbb{Z})$	T -	$\xrightarrow{\mathrm{S}} -\frac{1}{T},$	$T \stackrel{\gamma}{=}$	$\xrightarrow{\Gamma} T +$	1

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus $T, U \parallel$

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle$ $\textcircled{\odot}$

M: mirror symmetry, K_*: CP-like transformation 🙂

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle$

M: mirror symmetry, K_*: CP-like transformation 🙂 Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Further, $\{h_t\}$ don't change T, U, but do transform fields \rightarrow traditional flavor symmetry S

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! \bigcirc

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$

Lauer, Mas, Nilles (1989)

32 / 32

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_{\Sigma}: \rho(\mathbf{S}_T) = \frac{\mathrm{i}}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{pmatrix}, \quad \rho(\mathbf{T}_T) = \begin{pmatrix} \omega^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $ho(\mathrm{S}_T)$ and $ho(\mathrm{S}_T)$ build the reps. $\mathbf{2'}\oplus\mathbf{1}$ of modular group $\Gamma_3'=T'$ \bigcirc

$$\Phi_{n=-\frac{2}{3},-\frac{5}{3}} \xrightarrow{\mathbf{S}_T} (-T)^n \rho(\mathbf{S}_T) \Phi_n, \qquad \Phi_n \xrightarrow{\mathbf{T}_T} \rho(\mathbf{T}_T) \Phi_n$$

Saúl Ramos-Sánchez (UNAM)

The flavor puzzle with strings

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2, \mathbb{Z})_U$

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_t: \rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \ \rho(\mathbf{C}) = \rho(\mathbf{S}_T^2)$$

 $\begin{array}{l}\rho(A)\text{, }\rho(B)\text{ and }\rho(C)\text{ build the reps }\mathbf{3}_{2(1)}\text{ and }\mathbf{3}_{1(1)}\text{ of traditional flavor}\\ \text{group }\Delta(54)\text{ for }\Phi_{-2/3}\text{ and }\Phi_{-5/3} & \text{ }_{\text{f. also in Kobayashi, Plöger, Nilles, Raby, Ratz (2006)}\end{array}$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$ e_2 first eclectic flavor symmetry: modular + traditional flavor

$$\begin{split} \Delta(54)\cup T' &\cong \Omega(1) = SG[648,533] \\ \text{with } \mathcal{CP}: \ \Delta(54)\cup T'\cup \mathbb{Z}_2^{\mathcal{CP}} \cong SG[1296,2891] \end{split}$$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! \odot Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } SL(2,\mathbb{Z})_U$ first eclectic flavor symmetry: modular + traditional flavor

> $\Delta(54) \cup T' \cong \Omega(1) = SG[648, 533]$ with CP: $\Delta(54) \cup T' \cup \mathbb{Z}_2^{CP} \cong SG[1296, 2891]$ Can we generalize this in a bottom-up fashion ?