PASCOS 2023

BSM PHYSICS IN THE FAR-FORWARD REGION OF THE LHC

Sebastian Trojanowski

AstroCeNT, Nicolaus Coperenicus Astronomical Center of the Polish Academy of Sciences & National Centre for Nuclear Research, Poland

PASCOS 2023

UC Irvine

June 30, 2023

Whitepapers:

J.L. Feng, F. Kling, M.H. Reno, J. Rojo, D. Soldin etal, 2203.05090 L.A. Anchordoqui etal, 2109.10905

Republic

of Poland

European

Smart Growth

Funds

+ many other papers

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

Polish Science

European Union European Regional Development Fund

NATIONAL SCIENCE CENTRE

IT ALL STARTED AT UCI...

PHYSICAL REVIEW D 97, 035001 (2018)

ForwArd Search ExpeRiment at the LHC

Jonathan L. Feng,^{1,*} Iftah Galon,^{1,†} Felix Kling,^{1,‡} and Sebastian Trojanowski^{1,2,§} ¹Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA ²National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland

(Received 13 October 2017; published 5 February 2018)

November 28, 2017

UCI physics debuts in prime time

March 5, 2019

CERN approves UCI-initiated hunt for new particles at the Large Hadron Collider

FASER detector will seek clues pointing to hidden matter in the universe

FAR-FORWARD SEARCHES AT THE LHC

- Forward direction: lots of activity down the beam pipe
- Far-forward detectors:
 - well-screened from pp collisions
 - only neutrinos and muons survive
- Current Run 3: FASER, SND@LHC
- HL-LHC: proposed Forward Physics Facility (FPF)
- Physics:
 - "Precision" high-energy neutrino physics
 - Implications for QCD & cosmic-ray physics
 - New physics searches

Far-forward searches at the LHC in a bird's eye view

FORWARD PHYSICS FACILITY (FPF)

Underground facility:

- ~620 m far forward from the ATLAS IP,
- shielded by ~200 m concrete and rock.
- several experiments proposed (signatures: scattering, decay, ionization)
- up to ~1M neutrino events (of order 10k v_{τ} CC events)
- Main whitepapers: <u>2109.10905</u>, <u>2203.05090</u>
- <u>Summary</u> for P5 US fuding process, Recent technical update <u>CERN-PBC-Notes-2023-002</u>

STATUS

 \bullet FASER/FASERv and SND@LHC experiments are taking data

- Forward Physics Facility (FPF)
 - Experiments: largely based on existing collaborations (FASER, SND@LHC, MilliQan)
 - New ideas: Forward Liquid Argon Experiment (FLArE) BNL (lead), UCI, ...
 FORward MicrOcharge SeArch (FORMOSA) milliQan-based
- The U.S. Snowmass process endorsed in several frontiers

Energy Frontier, 2211.11084

In conclusion, our highest immediate priority accelerator and project is the HL-LHC, the successful completion of the detector upgrades, operations of the detectors at the HL-LHC, data taking and analysis, including the construction of auxiliary experiments that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades.

- CERN:
 - Large progress in facility planning & first site investigation
 - Extensive simulations (CERN FLUKA team); BG and radiation safety, muons
- Organization
 - Facility & experiments (Run 3 is running, HL-LHC: design)
 - 6th FPF workshop, June 8-9th (link)
 - Physics working groups (neutrino/QCD, BSM)

FAR-FORWARD PHYSICS

LIGHT LONG-LIVED PARTICLES

LIGHT LONG-LIVED PARTICLES @ FPF

 10^{-3}

F. Kling, ST, 2006.10630

LEP

Large LHC energies:

S. Foroughi-Abari, F. Kling, Y.-D. Tsai, FORMOSA 2010.07941 FPF whitepaper 2109.10905

MILLICHARGED PARTICLES AT FPF

• milliQan-like detector placed in the FPF

FORMOSA - FORWARD MICROCHARGE SEARCH

Sensitive to small energy depositions dE/dx of a particle with Q<0.1 e; plastic scintillator for detection

- leading projected bounds for m ~< 100 GeV
- complementary signature at FLArE scattering a-la-DM

NEUTRINO PHYSICS PROGRAM

Forward LHC Neutrinos

High-energy neutrinos at the LHC are preferentially produced in the forward direction

FORWARD NEUTRINOS

• Production: different meson decays dominate depending on the neutrino flavor and energy

• Detection: expected CC event rates (FPF)

~10 $^6\,\nu_{\mu},~few~x~10^5~\nu_e,~~(10^3\text{-}10^4~)~\nu_{\tau}$

• Extremely collimated flux of neutrinos

Dave Casper

FASER, Phys.Rev.D 104 (2021) 9, L091101

First FASER v observations

π K

 $\pi^+ \frac{u}{d}$

 $[\mathbf{\epsilon}_{X}^{ud}]_{\mu(e/\mu/e)}$

NEUTRINO NSI – CHARGED CURRENT

- Effective description Weak Effective Field Theory (WEFT), obtained from SMEFT below EWPT
- W, Z, H, t integrated out; WEFT Wilson coefficients to be matched onto SMEFT parameters at $\mu{\sim}m_w$
- $[\epsilon_X^{ud}]_{\alpha\beta}$ coefficients: X = L,R,S,P,T Lorentz structure; α charged lepton, β neutrino of different flavors

$$\begin{aligned} \mathcal{L}_{\text{WEFT}} \supset &- \frac{2V_{jk}}{v^2} \Big\{ [\mathbf{1} + \epsilon_L^{jk}]_{\alpha\beta} (\bar{u}^j \gamma^\mu P_L d^k) (\bar{\ell}_\alpha \gamma_\mu P_L \nu_\beta) + [\epsilon_R^{jk}]_{\alpha\beta} (\bar{u}^j \gamma^\mu P_R d^k) (\bar{\ell}_\alpha \gamma_\mu P_L \nu_\beta) \\ &+ \frac{1}{2} [\epsilon_S^{jk}]_{\alpha\beta} (\bar{u}^j d^k) (\bar{\ell}_\alpha P_L \nu_\beta) - \frac{1}{2} [\epsilon_P^{jk}]_{\alpha\beta} (\bar{u}^j \gamma_5 d^k) (\bar{\ell}_\alpha P_L \nu_\beta) \\ &+ \frac{1}{4} [\epsilon_T^{jk}]_{\alpha\beta} (\bar{u}^j \sigma^{\mu\nu} P_L d^k) (\bar{\ell}_\alpha \sigma_{\mu\nu} P_L \nu_\beta) + \text{h.c.} \Big\} . \end{aligned}$$

- Both production and detection probability for different neutrino flavors can be affected
- Example: BSM contributions to $\pi^+ \rightarrow \ell^+_{\alpha} \nu$, decays
- Constrained by $\Gamma(\pi
 ightarrow e
 u) / \Gamma(\pi
 ightarrow \mu
 u)$ & individual decay widths
- Measured values might already be contaminated by NSI compare with "theory" predictions
- Also, bounds can also be significantly weakened by tuning different Wilson coefficients

essential to detect the outgoing neutrino flavor

• Neutrino detection rate can also be modified in CC DIS, e.g., $\nu_{\mu} N \rightarrow (e/\mu/\tau) N^{*} [\epsilon_{x}^{ud}]_{(e/\mu/\tau)\mu}$

NEUTRINO NSI AT FPF

Characteristic for the FPF neutrino physics:

non-negligible v_{τ} flux from charm, not affected by (SM) oscillations & measured directly

- Forward charm production affects v_{τ} and high-energy v_e ; can be distinguished from neutrino NSI
- Example neutrino CC NSI analyses:

Neutrino NSI based on NC interactions in the FPF has also been studied

A. Ismail, R.M. Abraham, F. Kling, 2012.10500

F. Kling, T. Makela, ST, in

COSMIC-RAY MUON PUZZLE

• Observed more muons (30-60%) in ultrahigh-energy cosmic ray (UHECR) data than expected based on air-shower simulations (significance $\sim 8\sigma$)

• Task: simultaneously fit the (excess) number of muons N_{μ} and the depth of the shower maximum X_{max}

J.D. Allen, G.R. Farrar,

initial hadron

n=1

- Preferred solution: reduced energy transfer from hadronic to EM shower
- EM shower initiated by neutral pions π^{0}
- Muons come from charged pions and kaons
- The difference could be explained by

0

MUON PUZZLE & FPF

- Possible explanation: enhanced strangeness, K/ π ratio \uparrow
- Might be motivated by ALICE mid-rapidity data... P. Palni (for ALICE), 1904.00005
- Simple modeling introduce K $\rightarrow \pi$ swapping probability 0 < f_s < 1
- Underlying physics might be related to QGP formation, strange fireballs,...
- The effect is most pronounced for large^{1612,07328} fit f_s ~0.5 or so
- Increased K/π ratio:
 - increased ν_e rate for E_ν < TeV
 - increased ν_{μ} rate for E_{ν} > few hundred GeV
 - reduced ν_{μ} rate for lower energies
 - no impact on ν_τ rate

L. A. Anchordogui etal, 1907.09816;

L.A. Anchordoqui etal, 2202.03095

Swapping for [n]<

1.6

muon נטעוון enhancement₂(R_µ) נ

2.2

2.0

1.8

1.6

1.4

Auger data

f = 0.0

 $(R_{\mu})/(E/10 \text{ EeV})$

0.0

0.2

= 0.6

0.4

0.6

 f_s

0.8

1.0

 $\eta_{c1} = 12$

η_{cl}

NEUTRINO "SM" PHYSICS AT FPF

- PDF measurements
- high-energy vs \rightarrow extended kinematic coverage
- possible measurements for various nuclear targets (Ar, W)

Projected impact on down quark valence PDF from the PDF4LHC21 set

- Forward charm production (determines v_{τ} flux & spectrum at FPF) currently largest uncertainties
 - sensitive to gluon saturation, intrinsic charm,...

SUMMARY OF FAR-FORWARD LHC PHYSICS PROGRAM

- High-energy neutrino physics, connections to QCD & cosmic-rays, BSM
- Tool for BSM simulations: FORESEE F. Kling, ST, 2105.07077

FPF BSM WORKING GROUP

FPF physics working groups (+ different groups for facility and experiments)

WG1 – Neutrino Interactions (Leader: Juan Rojo)

- WG2 Forward Charm Production (Hallsie Reno)
- WG3 Light Hadron Production (Luis Anchordoqui, Dennis Soldin)
- WG4 BSM physics (Brian Batell, ST)

WG4 (BSM) goals:

a) trigger further discussions about possible unique BSM physics opportunities of the FPF,

b) **studies for already proposed benchmarks** (implementation, modeling uncertainties, new prod. and det. modes)

c) **facilitate exchange of (new) ideas** related to FPF BSM physics (slack channel, community, feedback from experimental representatives)

WE INVITE CONTRIBUTIONS / HAPPY TO DISCUSS IDEAS

QUIRKS WITH A LOW CONFINEMENT SCALE

- Postulated particles charged under a hidden strong force, QCD-like SU(N)
- If they carry also SM charge and color, they are pair produced at the LHC and connected by a "hidden" color string
- If they mass exceeds the hidden scale m >> Λ_{hidden} , breaking the string is not energetically favorable and quirks **do not** hadronize
- For $\Lambda_{hidden} \sim 10$ keV, macroscopic oscillations (mm-m), pair of charged tracks leaving fancy tracks
- Quirk—anti-quirk system has low p_T
- Heavy (100 GeV TeV) such quirks require LHC energies to be produced but often travel forward like light particles

$$\mathcal{E} = (N_{\rm IC}, 1, 1, -1)$$

A. Ariga, R. Balkin, I. Galon, E. Kajamovitz, Y. Soreq, 2305.03102

MUON-PHILIC DARK SECTORS

OTHER NEUTRINO-INDUCED BSM SIGNALS

High-energy LHC vs + precise FPF detectors

~GeV-scale v-induced particles can be produced in neutrino interactions R.M. Abraham etal, 2301.10254

- Scatterings off electrons, ve \rightarrow ve
- Neutrino oscillations into sterile neutrinos $\Delta m^2_{41} \sim 100 1000 \ {\rm eV}^2$

Neutrino EM properties

$$\begin{split} \langle \nu_f(p_f) | j^{\mu}_{\nu,\text{EM}} | \nu_i(p_i) \rangle &= \overline{u}_f(p_f) \Lambda^{\mu}_{fi}(q) u_i(p_i), \\ \Lambda^{\mu}_{fi}(q) &= \gamma^{\mu} (Q_{fi} - \frac{q^2}{6} \left\langle r^2 \right\rangle_{fi}) - i \sigma^{\mu\nu} q_{\nu} \mu_{fi} \end{split}$$

