

DARK MATTER PRODUCTION OUT OF KINETIC EQUILIBRIUM: LATEST DEVELOPMENTS

Andrzej Hryczuk

Based on:

T. Binder, T. Bringmann, M. Gustafsson & A.H. 1706.07433, 2103.01944

A.H. & M. Laletin 2204.07078, 2104.05684

work in progress with S. Chatterjee

PASCOS 2023 @ US Irvine

andrzej.hryczuk@ncbj.gov.pl

time

time

TO SEE WHY AND LEARN MORE STAY TUNED :)

numerical codes e.g., DarkSUSY, micrOMEGAs, MadDM, SuperISOrelic, ...

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3 \vec{p}_{\chi}}{(2\pi)^3} \frac{d^3 \vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \ f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

modified expansion rate

e.g., relentless DM, D'Eramo et al. '17, ... $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ numerical codes e.g., **DarkSUSY, micrOMEGAs, MadDM, SuperISOrelic, ...**

modified expansion rate

modified expansion rate

modified expansion rate

e.g., relentless DM, D'Eramo et al. '17, ... numerical codes e.g., DarkSUSY, micrOMEGAs, $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\mathrm{rel}} \rangle^{\mathrm{eq}} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\mathrm{eq}}n_{\bar{\chi}}^{\mathrm{eq}} \right) \\
\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\mathrm{rel}} \rangle^{\mathrm{eq}} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\mathrm{eq}}n_{\bar{\chi}}^{\mathrm{eq}} \right) \\
\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\mathrm{rel}} \rangle^{\mathrm{eq}} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\mathrm{eq}}n_{\bar{\chi}}^{\mathrm{eq}} \right)$ MadDM, SuperISOrelic, ... general multicomponent dark sector modified cross section Sommerfeld enhancement **Bound State formation** breakdown of necessary assumptions leading to NLO different form of the finite T effects equation, e.g. violation of

kinetic equilibrium

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) \boldsymbol{f}_{\boldsymbol{\chi}} = \mathcal{C}[\boldsymbol{f}_{\boldsymbol{\chi}}]$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_{t} - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$ $\bigvee_{\text{(i.e. take 0th moment)}}^{\text{integrate over } p}$ $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi} \to ij}\sigma_{\text{rel}} \rangle^{\text{eq}} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\text{eq}}n_{\bar{\chi}}^{\text{eq}}\right)$

where the thermally averaged cross section:

$$\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \ \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \ f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$$

*assumptions for using Boltzmann eq: classical limit, molecular chaos,...

...for derivation from thermal QFT see e.g., 1409.3049

Boltzmann equation for $f_{\chi}(p)$:

 $E\left(\partial_t - H\vec{p}\cdot\nabla_{\vec{p}}\right)f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal OFT see e.g., 1409.3049 integrate over p (i.e. take 0th moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel}\rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij}v_{\rm rel} f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$ 0.001 0.0001 10increasing $\langle \sigma v \rangle$ 10-Density 10-1 10-4 10-Number 10-10 10-10 10-10 Cornoving 10-10 10-1 10-13 n10-18 rea 10-1 10-80 100 1000 time \rightarrow x=m/TFig.: Jungman, Kamionkowski & Griest, PR'96

*assumptions for using Boltzmann eq:

Boltzmann equation for $f_{\chi}(p)$: *assumptions for using Boltzmann eq: $E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$ classical limit, molecular chaos,... ... for derivation from thermal OFT see e.g., 1409.3049 integrate over p (i.e. take 0th moment) $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}\to ij}\sigma_{\rm rel} \rangle^{\rm eq} \left(n_{\chi}n_{\bar{\chi}} - n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq} \right)$ where the thermally averaged cross section: 0.01 $\langle \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} \rangle^{\rm eq} = -\frac{h_{\chi}^2}{n_{\chi}^{\rm eq} n_{\bar{\chi}}^{\rm eq}} \int \frac{d^3\vec{p}_{\chi}}{(2\pi)^3} \frac{d^3\vec{p}_{\bar{\chi}}}{(2\pi)^3} \sigma_{\chi\bar{\chi}\to ij} v_{\rm rel} f_{\chi}^{\rm eq} f_{\bar{\chi}}^{\rm eq}$ 0.001 0.0001 10increasing $\langle \sigma v \rangle$ Density 10-10-10-10-10 10-10 10-10 10-10 10-10 Comoving **Critical assumption:** kinetic equilibrium at chemical decoupling 10-1 10⁻¹ $f_{\gamma} \sim a(T) f_{\gamma}^{eq}$ 10-18 nveo10-1 10-80 1000 time \rightarrow x=m/T Fig.: Jungman, Kamionkowski & Griest, PR'96

FREEZE-OUT VS. DECOUPLING

S

 \Rightarrow

Boltzmann suppression of DM vs. SM

(elastic) scattering

$$\sum_{\text{spins}} \left| \mathcal{M}^{\text{scatt}} \right|^2 = F(k, -k', p', -p)$$

scatterings typically more frequent

dark matter frozen-out but <u>typically</u> still kinetically coupled to the plasma Schmid, Schwarz, Widern '99; Green, Hofmann, Schwarz '05

EARLY KINETIC DECOUPLING?

A necessary and sufficient condition: scatterings weaker than annihilation i.e. rates around freeze-out: $H \sim \Gamma_{ann} \gtrsim \Gamma_{el}$

Possibilities:

B) Boltzmann suppression of SM as strong as for DM

e.g., below threshold annihilation (forbidden-like DM)

C) Scatterings and annihilation have different structure

e.g., semi-annihilation, 3 to 2 models,...

D) Multi-component dark sectors

e.g., additional sources of DM from late decays, ...

How to go beyond kinetic equilibrium?

All information is in the full BE:

both about chemical ("normalization") and kinetic ("shape") equilibrium/decoupling

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

contains both scatterings and annihilations

T. Binder, T. Bringmann, M. Gustafsson & A.H. 2103.01944 GOING <u>BEYOND</u> THE STANDARD APPROACH

- Home
- Downloads
- Contact

Applications:

DM relic density for any (user defined) model*

Dark matter Relic Abundance beyond Kinetic Equilibrium

Authors: Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk

DRAKE is a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. The code comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. The code is written in Wolfram Language and includes a Mathematica notebook example program, a template script for terminal usage with the free Wolfram Engine, as well as several concrete example models. DRAKE is a free software licensed under GPL3.

If you use DRAKE for your scientific publications, please cite

 DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium, Tobias Binder, Torsten Bringmann, Michael Gustafsson and Andrzej Hryczuk, [arXiv:2103.01944]

Currently, an user guide can be found in the Appendix A of this reference. Please cite also quoted other works applying for specific cases.

v1.0 « Click here to download DRAKE

(March 3, 2021)

<u>https://drake.hepforge.org</u>

Interplay between chemical and kinetic decoupling

Prediction for the DM phase space distribution

Late kinetic decoupling and impact on cosmology

• •

see e.g., 1202.5456

(only) prerequisite: Wolfram Language (or Mathematica)

*at the moment for a single DM species and w/o co-annihlations... but stay tuned for extensions!

Few words about the Code

written in Wolfram Language, lightweight, modular and simple to use both via script and front end usage

COLLISION TERM

$$E\left(\partial_t - H\vec{p} \cdot \nabla_{\vec{p}}\right) f_{\chi} = \mathcal{C}[f_{\chi}]$$

contains both scatterings and annihilations

 $\delta^{(3)}(\tilde{\mathbf{p}} + \tilde{\mathbf{k}} - \mathbf{p} - \mathbf{k}) \approx \sum_{n} \frac{1}{n!} (\mathbf{q} \nabla_{\tilde{\mathbf{p}}})^n \delta^{(3)}(\tilde{\mathbf{p}} - \mathbf{p})$

I) Expand in "small momentum transfer"

$$M_{\rm DM} \gg |\vec{q}| \sim T \gg m_{\rm SM}$$

typical momentum transfer

Kasahara '09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida '16

$$f_3 \simeq f_1 + \tilde{\mathbf{q}}_i \frac{\partial f_1}{\partial \mathbf{p}_{1i}} + \frac{1}{2} \tilde{\mathbf{q}}_i \tilde{\mathbf{q}}_j \frac{\partial^2 f_1}{\partial \mathbf{p}_{1i} \partial \mathbf{p}_{1j}}$$

A.H. & S. Chatterjee, work in progress...

(on different expansion schemes)

Bringmann, Hofmann '06

 \Rightarrow all lead to Fokker-Planck type eq.

 $\delta^{(3)}(\tilde{\mathbf{p}} + \tilde{\mathbf{k}} - \mathbf{p} - \mathbf{k}) \approx \sum \frac{1}{n!} (\mathbf{q} \nabla_{\tilde{\mathbf{p}}})^n \delta^{(3)}(\tilde{\mathbf{p}} - \mathbf{p})$

I) Expand in "small momentum transfer"

$$M_{\rm DM} \gg |\vec{q}| \sim T \gg m_{\rm SM}$$

typical momentum transfer

Kasahara '09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida '16 $f_3 \simeq f_1 + \tilde{\mathbf{q}}_i \frac{\partial f_1}{\partial \mathbf{p}_{1i}} + \frac{1}{2} \tilde{\mathbf{q}}_i \tilde{\mathbf{q}}_j \frac{\partial^2 f_1}{\partial \mathbf{p}_{1i} \partial \mathbf{p}_{1i}}$

A.H. & S. Chatterjee, work in progress...

(on different expansion schemes)

Bringmann, Hofmann '06

 \Rightarrow all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one (i.e. a relaxation-like approximation)

 \Rightarrow simpler, but generally incorrect

Ala-Mattinen, Kainulainen '19 $\hat{C}_{E,m}(p_1,t) \rightarrow -\delta f(p_1,t) \Gamma^m_E(p_1,t)$ Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22 $= (g_m(t)f_{eq}(p_1,t) - f(p_1,t)) \Gamma^m_E(p_1,t)$

 $\delta^{(3)}(\tilde{\mathbf{p}} + \tilde{\mathbf{k}} - \mathbf{p} - \mathbf{k}) \approx \sum \frac{1}{n!} (\mathbf{q} \nabla_{\tilde{\mathbf{p}}})^n \delta^{(3)}(\tilde{\mathbf{p}} - \mathbf{p})$

$$M_{\rm DM} \gg |\overrightarrow{q}| \sim T \gg m_{\rm SM}$$

typical momentum transfer

Kasahara '09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida '16

$$f_3 \simeq f_1 + \tilde{\mathbf{q}}_i \frac{\partial f_1}{\partial \mathbf{p}_{1i}} + \frac{1}{2} \tilde{\mathbf{q}}_i \tilde{\mathbf{q}}_j \frac{\partial^2 f_1}{\partial \mathbf{p}_{1i} \partial \mathbf{p}_{1j}}$$

 ∂f_1

A.H. & S. Chatterjee, work in progress...

(on different expansion schemes)

Bringmann, Hofmann '06

all lead to Fokker-Planck type eq. \implies

II) Replace the backward term with a simpler one (i.e. a relaxation-like approximation)

simpler, but generally incorrect

 $\hat{C}_{\mathrm{E}\,m}(p_1,t) \rightarrow -\delta f(p_1,t) \Gamma^m_{\mathrm{E}}(p_1,t)$ Ala-Mattinen, Kainulainen '19 $= (q_m(t) f_{eq}(p_1, t) - f(p_1, t)) \Gamma_{E}^{m}(p_1, t)$ Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22

 $(\hat{p}^i)' = -\hat{\eta}\,\hat{p}^i + \hat{f}^i , \quad \left\langle \,\hat{f}^i(x_1)\,\hat{f}^j(x_2)\,\right\rangle = \hat{\zeta}\,\delta^{ij}\,\delta(x_1 - x_2)$ III) Langevin simulations perhaps promising... Kim, Laine '23 stochastic term, taking care of detailed balance

 $\delta^{(3)}(\tilde{\mathbf{p}} + \tilde{\mathbf{k}} - \mathbf{p} - \mathbf{k}) \approx \sum \frac{1}{n!} (\mathbf{q} \nabla_{\tilde{\mathbf{p}}})^n \delta^{(3)}(\tilde{\mathbf{p}} - \mathbf{p})$

$$M_{\rm DM} \gg |\overrightarrow{q}| \sim T \gg m_{\rm SM}$$

typical momentum transfer

Kasahara '09; Binder, Covi, Kamada, Murayama, Takahashi, Yoshida '16 $f_3 \simeq f_1 + \tilde{\mathbf{q}}_i \frac{\partial f_1}{\partial \mathbf{p}_{1i}} + \frac{1}{2} \tilde{\mathbf{q}}_i \tilde{\mathbf{q}}_j \frac{\partial^2 f_1}{\partial \mathbf{p}_{1i} \partial \mathbf{p}_{1i}}$

(on different expansion schemes)

Bringmann, Hofmann '06

 \Rightarrow all lead to Fokker-Planck type eq.

II) Replace the backward term with a simpler one (i.e. a relaxation-like approximation)

 \Rightarrow simpler, but generally incorrect

perhaps promising...

Ala-Mattinen, Kainulainen '19 Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22 $\hat{C}_{E,m}(p_1,t) \rightarrow -\delta f(p_1,t) \Gamma_E^m(p_1,t)$ $= (g_m(t)f_{eq}(p_1,t) - f(p_1,t)) \Gamma_E^m(p_1,t)$

 $(\hat{p}^i)' = -\hat{\eta}\,\hat{p}^i + \hat{f}^i , \quad \left\langle \,\hat{f}^i(x_1)\,\hat{f}^j(x_2)\,\right\rangle = \hat{\zeta}\,\delta^{ij}\,\delta(x_1 - x_2)$

III) Langevin simulations

Kim, Laine '23

stochastic term, taking care of detailed balance

IV) Fully numerical implementation

A.H. & M. Laletin <u>2204.07078</u> (focus on DM self-scatterings) Ala-Mattinen, Heikinheimo, Kainulainen, Tuominen '22 Du, Huang, Li, Li, Yu '21 Aboubrahim, Klasen, Wiggering '23

 \Rightarrow doable, but (very) CPU expensive

Example A: Scalar Singlet DM

EXAMPLE A SCALAR SINGLET DM

To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

Results Effect on the Ωh^2

[... Freeze-out at few GeV \rightarrow what is the <u>abundance of heavy quarks</u> in QCD plasma? two scenarios: QCD = A - all quarks are free and present in the plasma down to T_c = 154 MeV QCD = B - only light quarks contribute to scattering and only down to 4T_c

14

...

Example D: When additional influx of DM arrives

D) Multi-component dark sectors

Sudden injection of more DM particles distorts $f_{\chi}(p)$ (e.g. from a decay or annihilation of other states)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?

AH, Laletin 2204.07078

EXAMPLE EVOLUTION

SUMMARY

I. In recent years a significant progress in refining the relic density calculations (not yet fully implemented in public codes!)

2. Kinetic equilibrium is a <u>necessary</u> (often implicit) assumption for <u>standard</u> relic density calculations in all the numerical tools... ...while it is not always warranted!

3. Introduced coupled system of Boltzmann eqs. for 0th and 2nd moments (cBE) allows for much more <u>accurate</u> treatment while the full phase space Boltzmann equation (fBE) can be also successfully solved for higher precision and/or to obtain result for $f_{DM}(p)$

(we also introduced **DRAKESS** <u>new tool</u> to extend the current capabilities to the regimes beyond kinetic equilibrium)

4. Multi-component sectors, when studied at the fBE level, can reveal quite unexpected behavior