Electron mass variation from dark sector interaction and compatibility with cosmological observation

Theoretical Particle & Cosmological Physics Group Hokkaido University D2 Yo Toda

Cosmic evolution

distant observation $H_0 \doteq 67 \text{km/s/Mpc}$

local observation $H_0 = \frac{73}{M}$

Cosmic evolution

Hubble tension

distant observation $H_0 \doteq 67 \text{km/s/Mpc}$ local observation $H_0 = \frac{73}{M}$

2

HUBBLE TENSION SOLUTION

Model	$\Delta N_{ m param}$	$\Delta \chi^2$	Finalist
ΛCDM	0	0.00	X
$\Delta N_{ m ur}$	1	-6.10	X
SIDR	1	-9.57	√ ④
mixed DR	2	-8.83	X
DR-DM	2	-8.92	X
$SI\nu + DR$	3	-4.98	X
Majoron	3	-15.49	√ ②
primordial B	1	-11.42	√ 🌖
varying m_e	1	-12.27	 ✓
varying $m_e + \Omega_k$	2	-17.26	 ✓
EDE	3	-21.98	√ ②
NEDE	3	-18.93	 ✓
EMG	3	-18.56	√ ②
CPL	2	-4.94	X
PEDE	0	2.24	X
GPEDE	1	-0.45	X
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-0.19	X
$\rm DM \rightarrow \rm DR$	2	-0.53	X

Phys.Rept. 984 (2022) 1-55 Nils Schoneberg *et al.*

HUBBLE TENSION SOLUTION

Model	$\Delta N_{ m param}$	$\Delta \chi^2$	Finalist	alactron mace variation			
$\Lambda \mathrm{CDM}$	0	0.00	X			111a55 va	Πατιστι
$\Delta N_{ m ur}$	1	-6.10	X				
SIDR	1	-9.57	√ 🧐				
mixed DR	2	-8.83	X				
DR-DM	2	-8.92	X				
$SI\nu + DR$	3	-4.98	X				
Majoron	3	-15.49	√ ②	6			
primordial B	1	-11.42	√ 🧐	tew	/er addi	itional pa	rameters
varying m_e	1	-12.27	√ ●				
varying $m_e + \Omega_k$, 2	-17.26	🗸 🥚	l la	rae imr	provemer	it in $\Lambda \gamma^2$
EDE	3	-21.98	√ ②		90 111		
NEDE	3	-18.93	✓ ②				
m EMG	3	-18.56	 ✓ ② 				
CPL		•					
PED	varving <i>m</i>	le		1	-12.27	\checkmark \bigcirc	
GFE		0					
DM	varying $m_e + \Omega_k$			2	-17.26	\checkmark \bigcirc	
DM							

Mass variation from extra dimensional theory

 inspired by the models with extra dimensions Randall-Sundrum model heterotic M-theory

J.Korean Astron.Soc. 37 (2004) 1-14

• bulk scalar field ϕ (dark energy) interacts with electrons and dark matter as m (

 $m \propto m_0 \mathrm{e}^{\beta \phi}$

 masses of nucleons are not varied (since the masses of the quarks are generally much less than the masses of the nucleons) • We investigate the model that dark energy couples to dark matter and electron

• In our model, mass of dark matter and electron in the early universe get greater

• We also fit our model to the cosmological data and find that the Hubble tension is relieved in our model

Setup of the model

Action

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{R}{2\kappa^2} - \frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - V(\phi) \right] + S_{\mathrm{matter}}(\psi, A(\phi) g_{\mu\nu}), \\ & \\ \mathsf{Dark\ Energy} \qquad \qquad A = \exp\left(2\beta\phi\right), \end{split}$$

Friedman equation and energy conservation

 $\mathcal{H}^{2} = \frac{1}{3}a^{2}\left(\rho_{\text{total}} + \frac{1}{2a^{2}}\dot{\phi}^{2} + V(\phi)\right); \qquad (\beta \text{ denotes the interaction magnitude})$

$$\ddot{\phi} + 2\mathcal{H}\dot{\phi} = \beta(\rho_{(i)} - 3p_{(i)})a^2;$$

$$\dot{\rho}_{(i)} + 3\mathcal{H}(\rho_{(i)} + p_{(i)}) = \beta(\rho_{(i)} - 3p_{(i)})\dot{\phi}, \Rightarrow m \propto m_0 e^{\beta\phi}$$

Numerical solution of the model

~

$$\begin{aligned} \mathcal{H}^2 &= \frac{1}{3}a^2 \left(\rho_{\text{total}} + \frac{1}{2a^2} \dot{\phi}^2 + V(\phi) \right); \\ \ddot{\phi} &+ 2\mathcal{H}\dot{\phi} = -\sum_{(i)} \beta(\rho_{(i)} - 3p_{(i)})a^2; \\ \dot{\rho}_{(i)} &+ 3\mathcal{H}(\rho_{(i)} + p_{(i)}) = \beta(\rho_{(i)} - 3p_{(i)})\dot{\phi}, \Rightarrow \quad m \propto m_0 e^{\beta\phi} \end{aligned}$$

(a) Evolution of the scalar field ϕ

Numerical solution of the model

FEATURE OF THE MODEL

ELECTRON MASS AND CMB

Electron mass at last scattering was greater than today $m_{\rm e\,|Last\,Scatter}/m_{\rm e\,|today} > 1$

Photons lose energy earlier

to excite electrons in hydrogen : energy level of hydrogen: $E \propto m_e$

Recombination occurs earlier

Last scattering time t_* gets shorter

ELECTRON MASS AND CMB

Angular Size : $\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$ $r_* = \int_0^{t_*} \frac{c_s d\tilde{t}}{a(\tilde{t})}$: comoving sound horizon at recombination $D_{M*} = \int_{t_*}^{t_0} \frac{d\tilde{t}}{a(\tilde{t})}$: comoving angular diameter distance D_{M*} $heta_*$ NASA / WMAP Science Team

ELECTRON MASS AND CMB

Angular Size :
$$\theta_* = \frac{r_*}{D_{M*}} = (1.0411 \pm 0.0003) \times 10^{-2}$$

 $\propto H_0 \times r_*$

Electron mass was greater than today and last scattering time t_* gets shorter

$$r_* = \int_0^{t_*} \frac{c_s d\tilde{t}}{a(\tilde{t})}$$
 : comoving sound horizon at recombination
forizon r_* decreases and Hubble constant H_0 increases

Next, I will show the results of our analysis…

DATA SETS

- CMB from Planck
- BAO from 6dF, MGS and DR12
- light curves from Pantheon
- local measurement of the Hubble constant from SH0ES (R19)

SOLVING HUBBLE TENSION

BEST-FIT

	Par	ameter	ΛCDM	our model	
	β		0	-0.03515	Interaction parameter $oldsymbol{eta}$,
	H_0	$[\rm km/s/Mpc]$	68.17	69.54	
	$\chi^2_{ m CM}$	MB high <i>l</i>	2346.31	2345.61	
	$\chi^2_{ m CN}$	MB low l	22.62	23.293	H_{2}
	$\chi^2_{ m CM}$	$MB \log E$	398.180	398.760	110
	$\chi^2_{ m CM}$	MB lensing	8.595	8.852	
	$\chi^2_{ m H0}$)74p03	16.983	9.980	
	$\chi^2_{ m JL}$	А	1034.80	1034.77	improve χ^2
	$\chi^2_{ m pri}$	ior	1.795	2.105	
	$\chi^2_{ m BA}$	10	5.200	6.386	
	$\chi^2_{ m too}$	dal	3834.47	3829.75	

ADDITIONAL COMMENTS

- $\Omega_b h^2$ does not increase
- \Rightarrow Not to spoil BBN's success.

(the simple electron mass varying model

leads to the larger $\Omega_b h^2$ and too small D/H)

• S_8 tension does not relieved

TAKE-HOME MESSAGE

• Electron mass variation from dark sector interaction is a promising solution to the Hubble tension. $(\beta \leq -0.03 \ (\Delta m_e/m_{e0} \geq 1.5\%)$ can solve the Hubble tension)

• In this model, the scalar field of DE is rolled by the DE-DM interaction, and the electron mass is varied due to the coupling between electrons and DE $m=m_0{\rm e}^{\beta\phi}$.

The combination of rolling by the potential $V(\phi)$ and

the coupling $m_0 e^{\beta \phi}$ is also worth considering.

Thank you for your kind attention!

Kouki Hoshiya, Yo Toda *Phys.Rev.D* **107 (2023) 4, 043505** y-toda@particle.sci.hokudai.ac.jp

Other parameters

perturbation

$$\dot{\delta}_{\rm de} = -3\mathcal{H}(1 - w_{\rm de})\delta_{\rm de} - (1 + w_{\rm de})kv_{\rm de} - (1 + w_{\rm de})\frac{\dot{h}}{2}$$
$$-9\mathcal{H}^2(1 - c_{\rm a}^2)(1 + w_{\rm de})\frac{v_{\rm de}}{k} - \beta\delta_{\rm de}\frac{a^2\rho_{\rm c}}{\dot{\phi}} + \beta\frac{\rho_{\rm c}}{\rho_{\rm de}}\dot{\phi}(\delta_{\rm de} - \delta_{\rm c})$$

$$\dot{v}_{\rm de} = 2\mathcal{H}v_{\rm de} + \frac{\delta_{\rm de}}{1+w_{\rm de}}k + \beta\dot{\phi}\frac{\rho_{\rm c}}{\rho_{\rm de}}v_{\rm de}\frac{c_a^2}{1+w_{\rm de}}$$

$$\dot{\delta_{\rm c}} = -\left(kv_{\rm c} + \frac{\dot{h}}{2}\right) + \beta\dot{\delta\phi}$$

 $\dot{v_{\rm c}} = -\mathcal{H}v_{\rm c} + \beta k\delta\phi - \beta\dot{\phi}v_{\rm c}$

Other parameters

