Affleck-Dine Leptogenesis with One Loop Neutrino Mass and a solution to Strong CP problem

Nobuchika Okada

University of Alabama

Based on

Rabindra N. Mohapatra (U of Maryland) & NO, Phys. Rev. D 106 (2022) 11, 115014

PASCOS 2023@UC, Irvine, June 27, 2023

Five Questions that the Standard Model <u>cannot answer</u> (5 Major Problems of the SM)

Five Questions that the Standard Model cannot answer

- 1. Why are Neutrino Masses are non-zero and so tiny?
- 2. What is the nature of **Dark Matter**?
- 3. Why is **CP-violation in QCD** so negligible?
- 4. What drives Cosmic Inflation before Big Bang?
- 5. What is the origin of Matter-Antimatter asymmetry in the Universe?

2. Possible solution to each problem

1. Effective Theory for Neutrino Mass Generation

Dim. 5 operators (Weinberg operator) consistent with the SM gauge symmetry

H.

After the electroweak (EW) symmetry breaking,

$$\langle H \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v_{EW} \end{bmatrix}, \ \mathscr{L}_5 \to -m_{\nu}^{ab} \nu_a \nu_b$$

Majorana mass: $m_{\nu}^{ab} = c_{ab} v_{EW} \times \frac{v_{EW}}{\Lambda} \ll v_{EW}$, for $v_{EW} \ll \Lambda/c_{ab}$

. H

For Ultraviolet (UV) completion, the dim-5 operators from integrating out heavy states (at tree-level/loop-levels)

Seesaw mechanism at tree/loop level

2. Dark Matter as a new particle

DM candidate: Massive Particle/Oscillating scalar field

 $Q_X = 0$, $\tau_X \gg \tau_U$ & Presser-less Equation of State (w=0)

The observed DM density measured by Planck 2018:

$$\Omega_{DM}h^2 = 0.12$$

This must be reproduced by some physics processes

3. QCD axion model for solving the strong CP problem

A solution proposed by Peccei & Quinn (1977)

- Extend the SM to incorporate a global PQ symmetry and a complex scalar to spontaneously break at f_a
- Nambu-Goldstone boson (axion ``a") arises and has a coupling:

$$\mathscr{L} \supset \frac{g_s^2}{32\pi^2} \frac{a}{f_a} \sum_{c=1}^8 G_{\mu\nu}^c \tilde{G}^{c\mu\nu}$$

- The CP-violating parameter $\boldsymbol{\theta}$ is replaced by the field axion
- $\langle a \rangle = 0$ is realized at the axion potential minimum
- Bonus: axion is a good candidate of DM for $f_a \sim 10^{12} \text{ GeV}!$

4. Slow-roll inflation to drive the cosmic inflation

- Inflation takes place during slow-roll: $a(t) \propto e^{H_{inf}t}$
- Quantum fluctuation $\delta \phi$ is magnified to a macroscopic scale —> primordial density fluctuation

Constraints on inflation scenario from CMB observations

BICEP/Keck 2018 PRL 127 (2021) 151301

A successful inflation scenario: non-minimal $\lambda \phi^4$ inflation

Action in the Jordan frame:

See, for example, NO, Rehman & Shafi, PRD 82 (2010) 04352

$$S_J = \int d^4x \sqrt{-g} \left[-\frac{1}{2} f(\phi) \mathcal{R} + \frac{1}{2} g^{\mu\nu} \left(\partial_\mu \phi \right) \left(\partial_\nu \phi \right) - V_J(\phi) \right]$$

Non-minimal gravitational coupling

$$f(\phi) = M_P^2 + \xi \phi^2$$
 with a real parameter $\xi > 0$

Quartic coupling dominates during inflation

$$V_J(\phi) = \frac{1}{4}\lambda\phi^4$$

Inflationary Predictions VS Planck+BK18+BAO results

- Once N_e is fixed, only 1 free parameter (ξ) determines the predictions
- Predicted GWs are $r \gtrsim 0.003$

Future experiments (CMB-S4, LiteBIRD) will cover the region!

<u>Non-minimal $\lambda \phi^4$ inflation</u>

- Simple 1-field inflation with the introduction of $\xi |\phi|^2 R$
- Consistent with Planck + others with a suitable choice of quartic coupling $\lambda | \phi |^4$
- Potentially, any scalar can play the role of inflaton

5. Affleck-Dine (AD) Baryogenesis (Affleck-Dine, 1985)

• A complex scalar field carries B/L number

$$\Phi = \frac{1}{\sqrt{2}} \left(\phi_1 + i \phi_2 \right)$$

• AD field potential includes B/L violating term(s)

$$\mathscr{L} \supset \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - V \quad \text{with } V = V_{sym}(\Phi^{\dagger} \Phi) + \left(V_{asym}(\Phi, \Phi^{\dagger}) + h \cdot c \cdot \right)$$

- A suitable initial condition of the AD field away from the potential minimum
- During the evolution of the AD field, the B/L number is generated $n_{\rm D}(t) = O_{\rm P}(\dot{\phi}_1 \phi_2 \dot{\phi}_2 \phi_1)$

$$\dot{n}_B(t) = \mathcal{Q}_{\Phi}(\varphi_1 \varphi_2 - \varphi_2 \varphi_1)$$
$$\dot{n}_B + 3Hn_B = 2Q_{\Phi} \operatorname{Im}\left(\frac{\partial V}{\partial \Phi^{\dagger}} \Phi^{\dagger}\right)$$

Sample: AD field evolution & baryon number generation

Illustration purpose (not a realistic value)

• Generated B/L asymmetry is transferred the SM thermal plasma by the AD field decay with B/L conserving interactions: $\mathscr{L}_{int} \sim \Phi \mathcal{O}_{SM}$ or $\Phi \mathcal{O}_{BSM}$

It would be interesting to ask the following questions:

AD field = Inflaton?

Recently, the models in which the AD field is identified with inflaton have been proposed several groups:

Chang, Lee, Leung & Ng (2009); Hertzberg & Karouby (2014); Takeda (2015); Babichev, Gorbunov & Ramazanov (2019); Cline, Puel & Toma (2020); Lloyd-Stubbs & McDonald (2021); Kawasaki & Ueda (2021); Barrie, Han & Murayama (2021) A simple idea: Introduce non-minimal gravitational coupling to the AD field:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} M_P^2 f R + \partial_\mu \Phi^\dagger \partial^\mu \Phi - V(\Phi) \right]$$

where $f = 1 + 2\xi \frac{\Phi^\dagger \Phi}{M_P^2}$

Identify the AD field with the inflaton in the non-minimal $\lambda \phi^4$ inflation scenario

- During the inflation, the inflation potential is dominated by $V\sim\lambda_{\Phi}(\Phi^{\dagger}\Phi)^{2}$
- The AD baryogengesis takes place after inflation

We follow a simple AD=Inflaton scenario by Lloyd-Stubbs & McDonald (2021): AD=Inflaton carries B/L number

$$V(\Phi) = m_{\Phi}^2 \Phi^{\dagger} \Phi + \epsilon m_{\Phi}^2 (\Phi^2 + \Phi^{\dagger 2}) + \lambda (\Phi^{\dagger} \Phi)^2$$

Explicit B/L violating term: $0 < \epsilon \ll 1$

Simple expression for the resultant B/L asymmetry:

$$\frac{n_B}{s} \simeq \frac{3}{8} \sqrt{\frac{\pi^2}{90}} g_* \frac{Q_\Phi}{\epsilon} \frac{T_R^3}{m_\Phi^2 M_P} \sin(2\theta)$$

for
$$\Gamma_{\Phi}/m_{\Phi} \ll \epsilon \ll 1$$

Suitable choice of the model parameters, the successful inflation and the observed baryon asymmetry can be achieved!

3. A unified Model

<u>``Partially unified'' pictures</u>

<u>``Partially unified'' pictures</u>

Particle content

Field	$U(1)_{PQ}$	SM quantum number	L
Fermion			
ℓ_a	+1	$({f 1},{f 2},-1)$	+1
e_a^c	-1	$({f 1},{f 1},+2)$	-1
q	+1	(3, 2, +1/3)	0
u^c	-1	$(3^*, 1, -4/3)$	0
d^c	-1	$(3^*, 1, +2/3)$	0
Q	-1	$({\bf 3},{\bf 1},-2/3)$	+1/2
Q^c	+2	$(1, 3^*, 1, +2/3)$	+1/2
χ_i	0	(1, 1, 0)	0
Scalars			
σ	-1	(1, 2, +1)	-1
Н	0	$({f 1},{f 2},+1)$	0
Φ	+1	(1, 1, 0)	+1
Δ	-1	(1, 1, 0)	-1

Vector-like exotic quarks

3 new singlet fermions \neq RHNs

inert Higgs doublet like scalar

AD field = Inflaton PQ scalar field A unified framework for solving 5 major SM puzzles

- I. Inflation driven by Inflaton/AD field 🛛 \Lambda ------
- II. PQ sim. breaking by $\langle \Delta \rangle = f_a \sim 10^{12} \text{ GeV}$

KSVZ-type axion model: $Y_Q \Delta Q Q^c \rightarrow m_Q Q Q^c$ Lepton number violating term generation: $\lambda' \Delta^2 \Phi^2 \rightarrow \epsilon m_{\Phi}^2 \Phi^2$

III. Lepton asymmetry generation during oscillation after inflation

IV. Reheating & Lepton asymmetry transmission to the SM sector by inflaton/AD decay

V. Combining all diagrams

Phenomenologically viable Benchmarks

parameter	value(set 1)	value(set 2)
ϵ	10^{-5}	10^{-3}
T_R/m_{Φ}	0.1	0.1
m_{Φ}	$10^6 { m GeV}$	$10^8 { m GeV}$
$m_{\sigma} \sim \mu_{22,33}$	$10^{6.5} \text{ GeV}$	$10^{8.5} { m GeV}$
β	~ 1	~ 1
m_{χ_1}	$\leq 1 \text{ eV}$	$\leq 1 \text{ eV}$
$m_{ u_1}$	$\sim 0 \ {\rm eV}$	$\sim 0 \text{ eV}$

4. Summary

Thank you

for your attention!