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1. Five Questions that the Standard Model

cannot answer
(5 Major Problems of the SM)




Five Questions that the Standard Model cannot answer
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. Why are Neutrino Masses are non-zero and so tiny?
. What is the nature of Dark Matter?

. Why is CP-violation in QCD so negligible?

. What drives Cosmic Inflation before Big Bang?

. What is the origin of Matter-Antimatter asymmetry in

the Universe?



2. Possible solution to each problem




1. Effective Theory for Neutrino Mass Generation

Dim. 5 operators (Weinberg operator) consistent with the SM
gauge symmetry
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For Ultraviolet (UV) completion, the dim-5 operators from
integrating out heavy states (at tree-level/loop-levels)
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2. Dark Matter as a new particle

DM candidate: Massive Particle/Oscillating scalar field

Oy =0, 7y > 7, & Presser-less Equation of State (w=0)

The observed DM density measured by Planck 2018:

[ Qph? = 0.12 ]

This must be reproduced by some physics processes



3. QCD axion model for solving the strong CP problem

A solution proposed by Peccei & Quinn (1977)

e Extend the SM to incorporate a global PQ symmetry and
a complex scalar to spontaneously break at f,

e Nambu-Goldstone boson (axion “"a”) arises and has a
coupling: -
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e The CP-violating parameter @ is replaced by the field axion
e (a) = Oisrealized at the axion potential minimum
e Bonus: axion is a good candidate of DM for f, ~ 101 GeV!




4. Slow-roll inflation to drive the cosmic inflation
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Slow-roll: E ~ V

End of Inflation:
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e Inflation takes place during slow-roll: a(f) « el

e Quantum fluctuation 6¢ is magnified to a macroscopic scale
—> primordial density fluctuation



Constraints on inflation scenario from CMB observations
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Power spectrum of scalar
perturbation:

(Py(ky) =2.099x 107
ko = 0.05 Mpc™!

Spectral index:
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A successful inflation scenario: non-minimal A¢* inflation

See, for example,

Action in the Jordan frame: NO, Rehman & Shafi, PRD 82 (2010) 04352
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e Non-minimal gravitational coupling

[f(¢) = M3 + fgbz] with a real parameter £ > (0

e Quartic coupling dominates during inflation

{VJ(cb) — W}

11



Inflationary Predictions VS Planck+BK18+BAO results
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e Once N, is fixed, only 1 free parameter () determines the predictions
e Predicted GWs are » = (0.003

Future experiments (CMB-S4, LiteBIRD) will cover the region!
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Non-minimal A¢* inflation

e Simple 1-field inflation with the introduction of £ | ¢ I°R

e Consistent with Planck + others with a suitable choice of
quartic coupling 4| ¢ |4

e Potentially, any scalar can play the role of inflaton
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5. Affleck-Dine (AD) Baryogenesis (Affleck-Dine, 1985)

e A complex scalar field carries B/L number
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e AD field potential includes B/L violating term(s)

F50,0'HD -V with V=V (qﬂcp)+(v (CI),(DT)+h.c.)

Ssym asym

e A suitable initial condition of the AD field away from the
potential minimum

e During the evolution of the AD field, the B/L number is
generated - -
np(t) = Qo (P12 — Pahy)
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Sample: AD field evolution & baryon number generation
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e Generated B/L asymmetry is transferred the SM thermal
plasma by the AD field decay with B/L conserving

Interactions: gim ~ (I)@SM or (I)@BSM
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It would be interesting to ask the following questions:

AD field = Inflaton?

Recently, the models in which the AD field is identified with
inflaton have been proposed several groups:

Chang, Lee, Leung & Ng (2009);
Hertzberg & Karouby (2014);

Takeda (2015);

Babichev, Gorbunov & Ramazanov (2019);
Cline, Puel & Toma (2020);

Lloyd-Stubbs & McDonald (2021);
Kawasaki & Ueda (2021);

Barrie, Han & Murayama (2021)

16



A simple idea: Introduce non-minimal gravitational coupling to
the AD field:

|
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|dentify the AD field with the inflaton in the non-minimal /1¢4
inflation scenario

e During the inflation, the inflation potential is dominated
by V ~ dg(®TD)?

e The AD baryogengesis takes place after inflation
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We follow a simple AD=Inflaton scenario by Lloyd-Stubbs &
McDonald (2021): AD=Inflaton carries B/L number

V(®) = m2dTd +@m(%(<l)2 + q>@+ DD

Explicit B/L violating term: 0 < € < 1

Simple expression for the resultant B/L asymmetry:

a N
np 3 [m? Qq) Tg i
U PNy 20
s = sV 00% e maa, Sm)

Y
. J

forl'g/mep K e K 1

Suitable choice of the model parameters, the successful
inflation and the observed baryon asymmetry can be achieved!
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3. A unified Model
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“Partially unified’’ pictures

Cnvisible Axion mod

el
with £, ~ 102 GeV]

2. Dark Matter \/‘
3. Strong CP problem

4. Inflation —

5. Baryogenesis /.

AD field = Im;Iaton
with&|@ | R
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“Partially unified’’ pictures

I nvisible AX|0|112mode|
2. Dark Matter W'thf 10~ GeV

3. Strong CP problem\/‘ . ? Unified picture

“.:' 1. Origin of .
i neutrino mass? :

----------------------

4. Inflation —

5. Baryogenesis /.

AD field -Inféaton
with&|@ | R

21



Particle content

Field ||U(1)pgl|/SM quantum number| L
Fermion
Ly +1 (1,2,-1) +1
es -1 (1,1,+2) —1
q +1 (3,2,+1/3) 0
u® -1 (3%,1,—4/3) 0
de 1 (3*,1,+2/3) 0
Q ~1 (3,1,-2/3) +1/2
Q° +2 (1,3*,1,+2/3) +1/2
Xi 0 (1,1,0) 0
Scalars
o 1 (1,2,+1) 1
H 0 (1,2,+1) 0
o +1 (1,1,0) +1
A ~1 (1,1,0) -1

Vector-like exotic quarks

3 new singlet fermions #* RHNs

inert Higgs doublet like scalar

AD field = Inflaton
PQ scalar field
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A unified framework for solving 5 major SM puzzles

. Inflation driven by Inflaton/AD field b --------

II. PQ sim. breaking by (A) = f, ~ 10'* GeV

KSVZ-type axion model: Y, AQQ — my,Q0°
Lepton number violating term generation:
A A*D? > em(%d)z

lll. Lepton asymmetry generation € Mg,
during oscillation after inflation O ----- @----- ()

IV. Reheating & Lepton asymmetry D ___‘___0___ ¥
transmission to the SM sector by AN :
inflaton/AD decay H A
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V. Combining all diagrams

Radiative seesaw mechanism
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Phenomenologically viable Benchmarks

parameter

value(set 1)

value(set 2)

€

Tp/mg

107°
0.1
10° GeV
10%° GeV
~ 1
<1eV
~ 0 eV

1073
0.1
10° GeV
10%° GeV
~ 1
<1eV
~ 0 eV
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4. Summary
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We have proposed a unified framework
for solving 5 major puzzles of the Standard Model

Invisible Axio?zmodel
2. Dark Matter with f, ~ 10" GeV
Unified picture
3. Strong CP problem ST ‘
Radiative :
Seesaw
4. Inflation —

5. Baryogenesis

AD field =Inflaton
with E| ¢ |* R

27






