Portal Matter Model Building for g-2

GEORGE N. WOJCIK- UW MADISON

BASED ON 2211.09918 WITH L. L. EVERETT, S.T. EU, AND R. XIMENES

Vector Portal/Kinetic Mixing DM

- One popular idea: Dark Matter (DM) is a particle χ that interacts only with a new "dark force" given by the gauge group $U(1)_D$.
- The Standard Model (SM) is entirely uncharged under $U(1)_D$.
- Interaction between the SM and DM is achieved via kinetic mixing: $\sim \frac{\epsilon}{2 c_W} B_{\mu\nu} A_D^{\mu\nu}$.
- So, SM now couples with strength $\sim \epsilon e Q$ to A_D .
- • m_{DM} , $m_{A_D} \sim 0.1 1$ GeV, $\epsilon \sim 10^{-(3-5)}$ reproduces the correct relic abundance without running afoul of other experimental constraints.
- Portal Matter: How do we generate ϵ ?

Portal Matter: Origins of ϵ

- The minimal setup: DM and a dark photon A_D . The small parameter ϵ is added by hand.
- By asking where ext{e} comes from, can we get a window into higher-energy physics?
- •A natural source for $\epsilon \sim 10^{-(3-5)}$ would be *portal* matter: Heavy particles charged under both $U(1)_D$ and SM hypercharge.^{1,2} Call the particle *P*, for portal matter.
- •To get *finite* and *calculable* ϵ , we need $\sum Q_{Y_i}Q_{D_i} = 0$ to eliminate dependence on the renormalization scale μ .

Portal Matter Theory 101

•What can we say about the portal matter? For this talk, we'll stick to fermionic portal matter.

- 1) Precision electroweak constraints, $H \rightarrow gg, \gamma\gamma$ branching ratio $\rightarrow P$ is **vector-like**.
- 2) If it's light enough to be thermally produced after reheating, it needs to decay before BBN
- •How to get it to decay? Decay has to violate $U(1)_D$, and therefore should come from coupling to the scalar(s) that break that symmetry.
- Simplest path: Portal Matter has the same SM quantum numbers as some SM fermion and mixes with it (easy)

Portal Matter Phenomenology 101

So we're looking for a portal matter ensemble that satisfies:

- 1) All P are vector-like copies of SM fermions, but with $U(1)_D$ charge.
- 2) Ensemble satisfies $\sum Q_{Y_i} Q_{D_i} = 0$
- •Highly suppressed decay via regular vector-like fermion decay channels, e.g. $P \rightarrow f Z$, instead dominantly decays via $P \rightarrow f A_D$, h_D .

Collider signature is then a **highly boosted** SM fermion (or jet) plus A_D or h_D .

- A_D, h_D signatures are model-dependent: May decay invisibly (to dark matter) or visibly (to light SM fermions)
- Leads to atypical signatures (e.g., displaced lepton-jets, slepton-like signatures).^{1,2}

Muon g - 2

An obvious question: Can portal matter address other mysteries in physics? Let's focus on one: Muon anomalous magnetic moment

•4.2 σ discrepancy between SM expectation and experiment ^{1,2,3}:

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}$$

- Why? Could be hadronic vacuum polarization is wrong⁴
- Could be **new physics**

The BSM g-2Cookbook

Three habits of highly effective g - 2 models:

- 1) Couple something new to the muon, or you won't change its magnetic moment.
- 2) New physics should have a scale < O(10 TeV), or your correction will be too small.
- 3) New physics couples to *both* chiralities μ_L and μ_R .
- •Muon-mixed portal matter can do (1) and (2).
- Doesn't do so well at (3)– Only chirality violation is from m_{μ} , and falls short by an order of magnitude

A Minimal Workable Framework

Field	$SU(2)_L \times U(1)_Y$	Q_D
$\boldsymbol{l_L} = \left(\boldsymbol{\nu}_L^{\mu}, \boldsymbol{\mu}_L\right)^T$	$\left(2,-\frac{1}{2}\right)$	0
μ_R	(1 , −1)	0
$\boldsymbol{L}_{\boldsymbol{L},\boldsymbol{R}}^{\pm} = \left(N_{\boldsymbol{L},\boldsymbol{R}}^{\pm}, L_{\boldsymbol{L},\boldsymbol{R}}^{\pm}\right)^{T}$	$\left(2,-\frac{1}{2}\right)$	±1
$E_{L,R}^{\pm}$	(1 , −1)	<u>±</u> 1
$S = v_S + (h_D + i \sigma_D)/\sqrt{2}$	(1,0)	+1

$$(\bar{\mu}_{L} \quad \bar{L}_{L}^{+} \quad \bar{E}_{L}^{+} \quad \dots) \begin{pmatrix} m_{\mu} & y_{SL}^{+} v_{S} & 0 \\ 0 & M_{L}^{+} & e^{i\phi_{LE}^{+}} \frac{y_{LE}^{+}}{y_{\mu}} m_{\mu} & \vdots \\ y_{SE}^{+} v_{S} & e^{i\phi_{EL}^{+}} \frac{y_{EL}^{+}}{y_{\mu}} m_{\mu} & M_{E}^{+} \\ \vdots \end{pmatrix} \begin{pmatrix} \mu_{R} \\ L_{R}^{+} \\ E_{R}^{+} \\ \vdots \end{pmatrix}$$

There are 5 chirality-flipping masses: $m_{\mu}, e^{i\phi_{EL}^{\pm}} \frac{y_{EL}^{\pm}}{y_{\mu}} m_{\mu}, e^{i\phi_{LE}^{\pm}} \frac{y_{LE}^{\pm}}{y_{\mu}} m_{\mu}.^{1}$

Naively, $y^{\pm}_{EL,LE}$ can be $\gg y_{\mu} \sim 10^{-4}$

In this basis, all Yukawas are positive, only complex phases are ϕ 's

g-2 in the Minimal Model

•Observed anomaly is entirely accounted for with $y_{LE}^{\pm}/y_{\mu} \sim O(10)$, $M_{L,E}^{\pm} \sim O(\text{TeV})$

- Light dark Higgs, dark photon means that there is *no* dependence on any parameters that directly enter the simplified dark matter model
 — this is entirely a portal matter effect.
- The physical phases ϕ_{LE}^{\pm} are critical to generating the correct sign correction here

Portal Matter Collider Production

First step in constraining the model: Limits on portal matter masses.

•On the right, we have the $\sqrt{M_L^+ M_E^+}$ needed to recreate Δa_{μ} , plus LHC constraints on M_E^+ , as well as HL-LHC, HE-LHC, *hh*-FCC¹

• y_{LE}^{\pm} , $y_{SL,SE}^{\pm}$ can only be constrained (at LHC) by perturbative unitarity.

-Multi-TeV muon collider can do better, probing portal matter masses up to $\leq \sqrt{s}/2$ and constraining $y_{SL,SE}^{\pm}$

Portal Matter Monophoton Signal

•With a muon collider, we could constrain $\Delta a_{\mu} \propto y_{SL}^{\pm} y_{SE}^{\pm}$ through monophoton events

 On the right, estimated discovery (solid) and exclusion (dashed) reach for c.o.m. energies of 3, 6, 10, 14, 30 TeV

```
•Feasible* to probe region y_{SL,SE}^{\pm} \sim O(1), which is exactly what we need!
```


Conclusions

Portal matter provides guidance to BSM model building, with ready constraints from searches for distinctive vector-like fermions

•Example: Muon g - 2 model building led us to a new parameter space

In the muon g - 2 model, parameter space that explains the anomaly can be readily probed in a multi-TeV muon collider

Thank You!