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Motivations for U(1)gs-L

Other than being the only conserved global symmetry in the standard model it can also help
explain other BSM physics:

Portal o DM Baryon Asymmetry Massive neutrinos

G. Choi et al., arXiv: 2008.12180 N. Sahu & U. Yajnik, arXiv:hep-ph/0410075
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Gauging U(1)s-L
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Anomaly-free

Helps generate Dirac neutrino masses
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M;u/p — 5(“ f Dror et al. 2017, arXiv:1707.01503
T E : y

Dror et al. 2017, arXiv:1705.06726

{ Couple X axially fo the new |
[ fermions to induce a mass term §

. 1
—(p + q) M = z—ﬂze"”“mqagxg’z

X szj%loo(mf, P, CI)XA,fYZ»
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rare Z decays and FCNC meson §
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H ! What's new then: A
We couple to the conserved current
i U(1)s.L , where for these amplitudes .
" we do not need to include new
| fermions to cancel the anomaly. 1§
{Rather, we use SM fermions to obtain]
a hon-zero amplitude to do
phenomenology with.

BI/ Holds for SU(2) Bp
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§ For conserved currents one may expect these divergences to go to zero, cmd ;
Thus there is nothing to gain, but we will show that this is not true if we are |
careful abouT ’rhe energy reg|me we choose To work m -

b - B S Sl 5 & - 2=
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Fermions decouple

Massless limit
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When summmg over all The
! standard model fermions |
we obtain O contribution,
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Energy

m, ~ 175 GeV

The massless piece will go to zero
The massive piece will have all fermions but the top
quark contribution go to zero

Thus, there will be a leftover non-zero amplitude
which we use to search for the B-L vector boson.
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Goldstone Boson Equivalence Theorem

At high energies the interaction of a longitudinally polarized massive
gauge boson is equivalent to the interaction of the corresponding
Goldstone boson that it ate.
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BR(Z = Xv) ~ 4 x 10710
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Rare Z Decays

BR(Z = X~y)~4x 1071

ANNANANNAN T

We then can use experimental
data from the LEP detectors
that search for visible decays X,
to electrons and muons as well
as invisible decays
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Flavor Changing Neutral Currents
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We plug in our effective vertex and obtain the effective Lagrangian for this process:




Flavor Changing Neutral Currents

u/c/t
>

d; > > dj

W |14

\ X

We plug in our effective vertex and obtain the effective Lagrangian for this process:

P = 8xaa X, Ay Prdi+h.c.

We can then calculate B to K and K to pi decays.
First, to translate this o an amplitude for meson decays we need to
calculate the necessary form factors...
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Flavor Changing Neutral Currents

di

u/c/t
> > >
%4 %%
X
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j2 F m129 _m%’ | P(.2
(P(PIV,|B(pp)) = (p + pp), — 2 1 (q7)
r02 2
+ 108 qzmp q,. 118 (q%),
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The form factors are given in

P. Ball, R. Zwicky arXiv:hep-ph/0406232
P. Ball, R. Zwicky arXiv:hep-ph/0412079
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Flavor Changing Neutral Currents
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Flavor Changing Neutral Currents
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Flavor Changing Neutral Currents

u/c/t
/P/ g dj

dz' >

94 14
We then have for our decay widths:

X
(8 = KX) = g (1= 25 )22
['(B — K*X) = 64’:%13( |9psx|*|f k- (m%)]? (i—QB>3
r(K =20~ >9‘ o
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Invisible Decays
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Visible Decays
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Visible Decays
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Summary

U(1)z-L is an interesting theory to study

Within particular energy regimes we can obtain non-zero anomalous
amplitudes that lead to enhanced processes

These processes can then lead to leading bounds in some regions of
parameter space

Note: This phenomena is more general than U(1)z-L and can be
applied to say U(I)L”_LT
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