Cosmic Anomalies?

Ned Wright

Two and a half Facts

- Peter Scheuer (1963)*: "There are only two & a half facts in cosmology:
- 1) The sky is dark at night.
- 2) The galaxies are receding from each other as expected in a uniform expansion.
- 3) The contents of the Universe have probably changed as the Universe grows older."

* In Longair, 1993, QJRAS, 34, 157

COSMOLOGY: A SEARCH FOR TWO NUMBERS

Precision measurements of the rate of expansion and the deceleration of the universe may soon provide a major test of cosmological models

- Sandage, Feb 1970, Physics Today
- H_o = 49 to 130 km/sec/Mpc
 - Sandage not yet hard over on 50
- $q_o = 1.2 \pm 0.4$
 - Notes not close to -1 for SS
 - Also not close to true -0.5 to -0.6

A Big Media Splash in 1992: **THE TIMES**

25 April 1992

Prof. Stephen Hawking of Cambridge University, not usually noted for overstatement, said: "It is the discovery of the century, if not of all time."

Harlow Shapley

 "A hypothesis or theory is clear, decisive, and positive, but it is believed by no one but the man who created it.

• Experimental findings, on the other hand, are messy, inexact things, which are believed by everyone except the man who did the work."

Ockham's Razor

Ockham chooses a razor

Set of All Random Processes

• A cosmological model is a prescription for generating an ensemble of Universes. Each element of the ensemble describes a different realization of a random process.

Small Subsets of All Models

• Gaussian and/or stationary random processes

Gaussian models

- The one point distribution function is Gaussian for all locations.
- The two point distribution function is Gaussian.
- The three point distribution function is Gaussian [and derivable from the two point function].
- [...]

Stationary Models

- The one point distribution function is independent of the location.
- The two point distribution function depends only on the (vector) separation.
- ISOTROPIC models: the distribution functions are invariant when the set of points is rotated.
- Stationary & isotropic models satisfy the Cosmological Principle.

The Cosmological Principle

• The Universe is homogeneous and isotropic

Not isotropic

Not homogeneous

Large Scale Effects

- The CMB quadrupole is low compared to ACDM.
- The octupole and quadrupole appear to be roughly aligned.
- There is the infamous "dark spot".

Look at the (W)MAP

- Fig of Bennett etal, arXiv:1001:475 8
- This huge dark spot at the GC is not "the" dark spot.

Cold Fingers of God

- The red line outlines "the" dark spot.
- Better called the "dark fingernail" of God

The Infamous "Dark Spot"

- Proposed by Cruz et al., astro-ph/0405341, "Detection of a non-Gaussian Spot in WMAP"
 - Of course it makes no sense to talk about "a non-Gaussian spot": one has to show that the underlying random process is non-Gaussian. If I choose a value from N(0,1), say 1.37, then the observed pdf is δ(T-1.37) which is non-Gaussian but the underlying process is Gaussian.

Large Search Space

- 15 different circular Mexican hat wavelet sizes were used.
- For each size, the whole sky was searched for outliers.
 - A fair estimate for the number of cases searched has to be > 10⁵.
- Claim that (l,b) = (209,-57) is a 4.7σ cold spot with a 5° scale (8.75° FWHM).
- But $exp(-\frac{1}{2} \times 4.7^2)$ is > 10⁻⁵, so where's the beef?

A Real Anomaly

- ``Imprints of a Primordial Preferred Direction on the Microwave Background"
 - Ackerman, Carroll & Wise, astro-ph/0701357
- Assumed that the 3D power spectrum is not isotropic: $P(\mathbf{k}) = P(k)(1 + g(k)(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})^2).$
- Then assumed g(k) is a constant g*. Estimated g*~10⁻⁵ might be possible.

Search in WMAP data

- ``Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data''.
 - Groeneboom & Eriksen, arXiv:0807.2242.
- They found a significant effect with $g^* \sim 0.12$
 - 10,000 times too big but who's counting.
- Then with more data, Groeneboom, Ackerman, Wehus & Eriksen (arXiv:0911.0150) found a 9σ effect! But the preferred axis now very close to the ecliptic poles.
- Conclusion: a systematic error in the WMAP maps due to ellipticity of the beams.
- Remembering Shapley, always look for systematic errors.

 It is best to observe the sky in all possible orientations. COBE did this well, WMAP did OK but Planck used a very limited range of scan angles.

Quantify using Bock Goodness:1-($<\sin(2\theta)>^2+<\cos(2\theta)>^2$)

• Median: WMAP 0.65, Planck 0.047

Quasar Number Count Dipole

- Large samples of "quasars" have been constructed using WISE colors: W1-W2 > 0.8 and W2 < 16.4 (Vega). (Secrest etal arxiv:2009.14828)
- |b| > 30 and other masks for bright sources
- Dipole of resulting map is too big for Compton-Getting effect.

I too have struggled to use WISE number counts for cosmology

- Measurement of the Integrated Sachs-Wolfe Effect Using the AllWISE Data Release, Shajib & Wright, arxiv:1604:03939
- Luckily only needed intermediate angular scales
- Consistent with ΛCDM

Figure 2. Overdensity maps in galactic coordinate with HEALPIX resolution parameter $n_{side} = 128$ for galaxies (left) and AGNs (right). These maps are smoothed with a Gaussian window of standard deviation $\sigma = 0.5^{\circ}$. The grey area is the mask where the overdensity is zero. The mask leaves the unmasked sky fraction $f_{sky} = 0.46$.

WISE Made NO Attempt at Uniform Sky Coverage

- What could make a confounding pattern in the counts? Here are two effects:
 - The scan density is 7% larger around aphelion (July) than perihelion (Jan) due to the eccentricity of the Earth's orbit.
 - There is a South Atlantic Anomaly but no North Atlantic Anomaly Hit Rates in 7.7 seconds from W1&2

Is Space Flat?

- Planck slightly favors a closed space with a very low H₀.
- The South Pole Telescope is OK with flat space.
- Combining CMB with BAO, flat space is good and H₀ is higher.

Hubble "Constant" is H(t)

 Looks like the Universe formed in 1920 and dark energy dominates after 1965
Figure credit: John Huchra

Past Hubble Tension

• Remember $H_0 = 100h$? I do

Current Hubble Tension

• Old 50 vs 100, 5 sigma;

New 68 vs 73, 5 sigma Credit: Wendy Freedman arxiv: 2106.15656

My Conclusion

- Cosmology is now data rich.
- With lots of data, outliers are inevitable.
- The 6 parameter Lambda-CDM model is still an adequate fit.
- Tensions are to be expected with a large number of number of data sets. They are worth tracking but hardly worth a press release.