Measuring the properties of dark matter with galaxy-scale strong gravitational lenses

ANNA NIERENBERG UNIVERSITY OF CALIFORNIA, MERCED

Overview

Gravitational lensing-dark matter connection
Overview of techniques
Recent Results
Future Prospects

Different dark matter models <-> different dark matter halos

Cold Dark Matter e.g. WIMP

Warm Dark Matter – e.g. Sterile Neutrino

Different halo Mass Functions

Different halo **Density Profiles**

A huge space of dark matter models to explore

- Weakly Interacting Massive Particles (WIMPs)
- Sterile Neutrinos
- Axions
- Primordial black holes (Massive Compact Halo Objects) explain LIGO detections, seeds for supermassive black holes.
- Self-interacting dark matter

Schive et al. 2014

Dark matter structure measurements traditionally rely on galaxies as tracers

Galaxies are collections of stars, which we believe to be embedded in a dark matter halos, so there are two solutions:

- 1) There are a large number of halos below some mass scale which do not contain enough gas or stars for us to see (almost certainly true)
- 2) Dark matter doesn't form structure on small scales

Goal: Detecting halos in the dark regime

Gravitational lensing-dark matter connection

Strong lenses have multiple images of the same background source

Gravitational lensing is sensitive to perturbations by dark matter halos

Low-mass perturbers cause **deflections** and **magnifications**

Vegetti et al. 2010

Gravitational lensing is sensitive to perturbations by dark matter halos

Low-mass perturbers cause **deflections** and **magnifications**

Deflection \propto first derivative

$$\vec{\alpha}(\vec{\theta}) = \vec{\nabla} \psi$$

Gravitational Potential

$$\psi(\vec{\theta}) = \frac{\mathsf{D}_{\mathsf{d}\mathsf{s}}}{\mathsf{D}_{\mathsf{d}}\mathsf{D}_{\mathsf{s}}} \frac{2}{\mathsf{c}^2} \int \Phi(\mathsf{D}_{\mathsf{d}}\vec{\theta}, z) \, \mathsf{d}z \; .$$

Magnification ∝ second derivative

$$\left(\delta_{ij} - \frac{\partial^2 \psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right) = M^{-1}$$

We detect perturbations as deviations from the single deflector model.

See also Minor et al. 2022 for an analysis of concentration

Strength of using lensing to measure dark matter

- No dependence on halos containing baryons (could be completely dark)
- Measure low-mass halo properties at a range of cosmological distances and environments

Types of **Background Sources**

Resolved (Galaxies)

current sensitivities to $\sim 10^8 M_{\odot}$ halos, main signal from deflections. (a.k.a. gravitational imaging)

Unresolved (narrow-line emission, some sensitivity regimes radio)

current sensitivities to $\sim 10^{6.5}$ M_{\odot} halos main signal from magnification (a.k.a. flux ratio anomalies)

Fundamentally the same process, different

Results from resolved source lensing – individual subhalo detection

Results from resolved galaxy sources – individual detection 34 lenses

Results from combining with other probes

Resolved source-multiple detections (power spectrum)

Quantify via a residual power spectrum

Caveat: does not include line of sight structure

See also forecasting work by Hezaveh et al. (2014), Cyr-Racine et al. (2019)

Forecast power spectrum forecast with line-of-sight structure- 50 lenses HST single orbit

Forecast for varying lens samples, using ML

Wagner-Carena 2023 (assume CDM, measure subhalo mass function normalization).

Unresolved sources

Credit: STSCI, GO-15177, 13732 Pl Nierenberg

Signal of a perturbation in an unresolved source

Signal of a perturbation in an unresolved source

Signal of a perturbation in an unresolved source

Unresolved source types

- Quasar radio emission (traditional, e.g. Dalal and Kochanek 2002), very rare
- Quasar narrow-line emission detected in virtually all quasars
- Quasar cold torus

Caveat: Cannot use quasar accretion disk, is affected by lensing by stars.

Restrict to non-disk deflectors

Choose only lenses with elliptical deflectors

Marginalize over a broad range of macromodel parameters

Quantify effects of asymmetry in deep images of elliptical galaxies (Gilman et al. 2016, Hsueh et al. 2016)

Narrow-line flux ratios measured with HST grism and Keck-OSIRIS

HST-GO 13732 and 15177 PI: Nierenberg

Flux Ratios: Nierenberg et al. 2017, 2020

Keck OSIRIS, Nierenberg et al. 2014

Results from a sample of 8 lenses

The model

- The mass function of halos bound to the main lens
- The spatial distribution of halos bound to the main lens
- The mass function of halos outside of the main lens
- The mass concentration relation of the subhalos
- Unknown finite source size'

All software is open source and publicly available on github

Lenstronomy: All data analysis and gravitational lensing calculations. (Birrer and Amara 2018, Birrer et al. 2021)

PyHalo: Generates populations of dark matter halos and profiles along the line of sight and in the main lens. (Gilman et al. 2022)

NL Flux Ratios Results from 8 lenses

Gilman, et al. 2020a

C.f. consistent results also from Hsueh et al. 2020 with radio loud quads

Measuring the halo mass function where majority of halos are dark

Combining results with MW satellites

Many more aspects of dark matter are now being explored

Mass-concentration relation results with 11 lenses

4 Different sterile neutrino models

Primordial Black Holes

Self-interacting dark matter

Tidal stripping leads to run-away collapse of dark matter subhalos 100 cm²/g at velocities below 30 km/s strongly ruled out. (Gilman et al. 2022)

"Fuzzy" Dark Matter

Tying the measurement back to the primordial power spectrum

Coming soon, the quasar cold torus flux with the James Webb Space Telescope

Small source

sensitive to

perturbers

Simulation from Caltech/JPL, based on Yang et al 2020

Forecast constraints with JWST- 38.4 hours to observe 31 lenses in Cycle 1

Simulated JWST MIRI image JWST-GO-02046, PI Nierenberg

Forecast constraints with JWST- 38.4 hours to observe 31 lenses in Cycle 1

Some other forecasts with JWST:

SIDM: Gilman et al. 2021

Also we will detect or rule out 50% mixed warm/dark matter (Keeley et al. 2022, see talk tomorrow!)

The future...

Continuous improvement of lens models
 New data
 New lenses

Host galaxy modelling for stronger constraint on macromodel

High sensitivity of narrowline magnification with large-scale constraint from arcs

Birrer 2021

Future prospects for unresolved source lensing

Hundreds of new lenses will be discovered in upcoming surveys (LSST, Euclid, Roman~ mid 2020s)

Improved flux precision with next generation instruments and observatories

Oguri and Marshall 2010

Development of next generation detectors

- Liger is an upgrade to the current IFS on Keck
- NL lensing was one of three main science goals highlighted in recent MSIP funding proposal
- Status: Advanced to stage 3 NSF MSRI-2, now up to NSF site visit.

OSIRIS

Future prospects for gravitational imaging- single detection- higher spatial resolution

Development of next generation detectors

IRIS Simulation courtesy of Nils-Erik Rundquist (UCSD)

Conclusions

Galaxy-scale strong gravitational lensing provides a rich variety of tests of dark matter models

Constraints on WDM models from galaxy-scale lenses are among the tightest we have

Future surveys will enable us to push these methods into new regimes