Dark Energy

Josh Frieman U. Chicago, Fermilab

UCLA Dark Matter Conference March 29, 2023

Cosmology 2023: ACDM

- Well-tested (6-parameter) cosmological model:
 - Universe expanding from hot, dense, early phase 13.8 billion years ago.
 - Early epoch of accelerated expansion (inflation) produced nearly flat & smooth spatial geometry and generated large-scale density perturbations from quantum fluctuations.
 - From these, structure formed via gravitational instability of cold dark matter (CDM, 25%) in currently cosmological constantdominated (Λ,70%) universe, which is again accelerating.
- Consistent with all data from the Cosmic Microwave Background, large-scale structure, gravitational lensing, supernovae, clusters, light element abundances, ...

CMB Temperature Anisotropy

Cosmological Physics

- Despite remarkable success of ΛCDM , we don't understand the physics of dark matter, dark energy, or inflation.
- What is the Dark Matter?
- Who is the Inflaton?
- What is the origin of Cosmic Acceleration?
 - Dark Energy or Modification of General Relativity?
 - Nature of Dark Energy: ∧ or dynamical component (e.g., an ultra-light field)?
- How do they fit into extensions of the Standard Model of Particle Physics?

Cosmological Dynamics

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} \rho_i \left(1 + 3w_i\right)$$

Friedmann Equation from General Relativity

- Dark Energy: dominant, "repulsive gravity" component of the energy density that drives cosmic acceleration ($\ddot{a} > 0$) via an equation of state parameter, $w = \frac{p}{\rho} < -1/3$.
- Special case: vacuum energy, w = -1, equivalent to Einstein's cosmological constant Λ .
- Alternative: replace GR with a new theory of gravity.

DE Equation of State parameter w determines Cosmic Evolution

Signatures of Dark Energy

Expansion History Probes: SNe, BAO

Growth of Structure WL, CL, RSD

To constrain DE and test Λ CDM, we're aiming toward 1%-level measurements. In GR, there's a fixed relation between expansion history and structure growth: consistency test.

Cosmic Surveys: Stage III to Stage IV

=	Project	Dates	$\rm Area/deg^2$	Data	Spec- z Range	Methods
Stage III	BOSS	2008 - 2014	10,000	Opt-S	0.3-0.7 (gals)	BAO/RSD
					$23.5~(\mathrm{Ly}lpha\mathrm{F})$	
	KiDS	2011 - 2019	1350	Opt-I		WL/CL
	DES	2013 - 2019	5000	Opt-I		WL/CL
						SN/BAO
	eBOSS	2014 - 2018	7500	Opt-S	$0.62.0 \;(\mathrm{gal/QSO})$	BAO/RSD
					$23.5~(\mathrm{Ly}lpha\mathrm{F})$	
	SuMIRE	2014 - 2024	1500	Opt-I		WL/CL
				Opt/NIR-S	$0.8-2.4 \;({ m gals})$	BAO/RSD
	HETDEX	2017 - 2023	450	Opt-S	1.9 < z < 3.5 (gals)	BAO/RSD
Stage IV	DESI	2021 - 2026	14,000	Opt-S	$0-1.7 \;({\rm gals})$	BAO/RSD
					$23.5~(\mathrm{Ly}lpha\mathrm{F})$	
	VRO/LSST	2025-2035	20,000	Opt-I		WL/CL
						SN/BAO
	Euclid	2023-2029	15,000	Opt-I		WL/CL
0)	_			NIR-S	$0.7{-}2.2~({ m gals})$	BAO/RSD
	Roman	2026 - 2031	2200	NIR-I		WL/CL/SN
_				NIR-S	1.0-3.0 (gals)	BAO/RSD

I=Imaging, S=Spectroscopic

The Dark Energy Survey

- Probe origin of Cosmic Acceleration:
 - Clusters, Weak Lensing, Galaxy clustering, Supernovae
- Two multicolor surveys:
 - 200 M galaxies over 1/8 sky
 - 2000 supernovae (27 sq deg)
- 570 Megapixel Camera built at Fermilab
 - DECam Facility instrument
- Survey Aug. 2013-Jan. 2019
 - 575 nights
 - Final analyses on-going

DECam on the CTIO Blanco 4m

International collaboration; US support from DOE+NSF

9

Type la Supernovae

Standardizable candles probe relative distance vs. redshift (expansion history).

SN la brightness (light-curve) & color provide low-dispersion estimate of its distance.

Type la Supernovae

Current state of the art: Pantheon+

Coming soon: DES Y5 SN results.

Recent progress in modeling SN Ia color and luminosity variation.

Brout+22

Baryon Acoustic Oscillations (BAO)

 $D_H(z) = \frac{c}{H(z)} = \frac{r_d}{\Delta z}$

Distance $r_d = 150$ Mpc travelled by sound waves up to photon decoupling imprints peak(s) in CMB angular power spectrum. Same feature appears as a $\sim 10\%$ bump in galaxy 2point correlation function along and transverse to line of sight and provides a standard ruler.

Baryon Acoustic Oscillations (BAO)

SDSS BAO Distance Ladder

Final sample size: 4M galaxies with redshifts

13

Alam+ 21

Distance Measurements

Consistency of CMB, BAO, and SN distances in **ACDM** allows us to combine them to get tighter constraints (see below).

Alam+ 21; Weinberg & White 22

Dark Energy Survey Y3 BAO Results

DARK ENERGY SURVEY

Transverse BAO measurement from 7 million galaxies; 2.7% distance measurement to z=0.835.

BAO Angular Diameter Measurements

DARK ENERGY SURVEY

Growth of Structure

Best-fit Λ CDM model to CMB data (*Planck*, z=1000) predicts amplitude, shape, and growth rate of structure in cosmic surveys at low redshift (z<1). Do they agree?

Planck Temperature map (z~1000)

DES Weak Lensing mass map $(z\sim0-1)$. 5000 sq. deg.

N. Jeffrey; Dark Energy Survey Collaboration

Dark Matter map from DES observations

Weak Lensing

- Cosmic shear: ~1% correlated distortions of galaxy shapes
- Radial distances depend on expansion history of Universe
- Foreground mass distribution depends on growth of structure
- 18

DES Year 3 Cosmology Analysis: 3x2

- Compare & consistently combine three 2-point correlation function measurements:
 - Galaxy clustering: 10.7M foreground galaxy positions
 - Cosmic shear weak lensing:100M source galaxy shapes
 - Galaxy-galaxy lensing: source galaxy tangential shear around foreground galaxy positions
 - Fully blind analysis; \sim 30 papers released to May 2021
- New analysis algorithms developed for DES:
 - Metacalibration weak lensing shape measurement
 - Photo-z estimation using self-organizing maps & cross-correlation, calibrated from deep 8-band imaging.
 - Balrog: measure selection function by inserting artificial galaxies into DES images, derived from deep fields.

DES Year 3 Measurements

ACDM

 10^{-2}

10⁻³ ≍ 10⁻⁴ 10⁻⁵

10

DES Collaboration 2021

galaxy-galaxy lensing Prat+

4,1

Measurements + joint model fit

+26 nuisance parameters

Each panel shows (cross-)correlation between photometric redshift bins.

3x2 DES Constraints: ACDM

DES Collaboration 2021

3x2pt results

 $S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$

Cosmic shear (blue)

Galaxy clustering and tangential shear (orange) DES-only results: $S_8 = 0.776^{+0.017}_{-0.017}$ (0.776)

 $\Omega_{\rm m} = 0.339^{+0.032}_{-0.031} \ (0.372)$ $\sigma_8 = 0.733^{+0.039}_{-0.049} \ (0.696)$

DES vs Planck: ACDM

Consistency with the CMB in \CDM DES Collaboration 2021

Planck+ Λ CDM predicts factor 10³ growth in fluctuations from z=1000 to 2% with no free parameters.

No significant evidence of inconsistency between **DES Y3 3x2pt** and *Planck* CMB at

 $0.7-1.5\sigma$ or p=0.13-0.48

Important consistency test for Λ CDM.

DES contours will shrink with $Y3 \rightarrow Y6$ and inclusion of clusters, BAO, supernovae,...

Redshift Space Distortions (RSD)

Anisotropy of clustering in redshift space encodes growth rate of structure

Alam+ 21

Combined Constraints: ACDM

Consistency with the CMB in Λ CDM DES Collaboration 2021

Combined Constraints: wCDM

Allow Dark Energy equation of state to differ from w = -1. Results consistent with Λ CDM.

Combined Constraints: w₀w_aCDM

Evolving DE EOS model:

$$w(a) = w_o + (1 - a)w_a$$

$$w_0 = -0.95 \pm 0.08, \quad w_a = -0.4^{+0.4}_{-0.3}$$

consistent with ΛCDM

Combined Constraints: Modified Gravity

Modified Gravity model:

$$k^{2}\Psi = -4\pi Ga^{2} \left[1 + \mu(a, k)\right] (\rho \delta + 3(\rho + P)\sigma),$$

$$k^{2}\Phi = -4\pi Ga^{2} \left[1 + \Sigma(a, k)\right] (2\rho \delta + 3(\rho + P)\sigma)$$

$$\Sigma_0 = 0.04 \pm 0.05, \quad \mu_0 = 0.08^{+0.21}_{-0.19}$$

consistent with $\ensuremath{\mathsf{GR}}$

Hubble Tension

- Tension between LSS and Cepheids (SHOES) even without Planck.
- Simple extensions to ΛCDM don't resolve the tension.
- Systematics or new early Universe (z~1000) physics.

Compilation of H₀ Estimates

Freedman, 2021

Strong Lensing Time Delays and H₀

DESJ0408-5354 Quadruply imaged QSO

Shajib+ 2020

Birrer+ 2020

Strong Lensing Time Delays and H₀

Quadruply imaged QSO

Spatially resolved lens galaxy velocity dispersion measurement better constrains lens model

Restframe wavelength (Å)

Restframe wavelength (Å)

31 Shajib+2023

Strong Lensing Time Delays and H₀

Spatially resolved lens galaxy velocity dispersion measurements enable more flexible models & more robust constraints, without sacrificing precision.

Shajib+2023

What's next: Stage IV Surveys

DESI

- 5000-fiber spectrograph on the Mayall 4m at Kitt Peak
- 40M extragalactic redshifts over 5 years

- 10X sample size of SDSS+
- 3X BAO precision
- Improved RSD precision across redshifts

Dark Energy & Modified Gravity

Data are consistent with cosmological constant and GR. But still room for surprises/discoveries (new physics).

Dark Energy & Modified Gravity

Data are consistent with cosmological constant and GR. But still room for surprises/discoveries (new physics).

Dark Energy & Modified Gravity

Data are consistent with cosmological constant and GR. But still room for surprises/discoveries (new physics).

Vera Rubin Observatory

Legacy Survey of Space and Time (LSST): 10-year multi-band imaging survey with 3 Gigapixel camera on new 6.5m telescope in Chile (Cerro Pachon)

LSST Forecasts

(LSST DESC 2018-21)

The Information Scandal

- We're not extracting all the cosmic information from current surveys:
 - We discard small-scale information, since we can't yet reliably model it (baryonic effects).
 - The large-scale mass distribution is non-Gaussian, so there is cosmic information in N>2 point correlations. But they are computationally challenging to measure and model.
 - On the other hand, theorists and analysts are cheap compared to the ~\$5B price tag of Stage IV experiments. Theory & modeling advances could perhaps net ~20-40% cosmological gains.

Unused Information

galaxy-galaxy lensing Prat+ Measurements + joint model fit 10^{-2} 4,1 10 10 10 $\Delta \gamma_t / \sigma_y$ 10^{-2} 10^{-3} cosmic shear Amon+, Secco, Samuroff+ ± 10 10^{-5} 10-10 10 10-5 10^{-5} $\Delta \gamma_t / \sigma_y$ ^ເພັ 10⁻ -6 10 10^{-2} ⁺30⁻/+ 10^{-3} 10 ± 10⁻ ¥ 10⁻ 10^{-5} 10-4~~ 10 + 10⁻ 10-5 ^سً 10-10⁻⁶^س 10^{-2} ⁺10⁻ -10⁻ 10^{-3} ***************** ± 10⁻⁴ ¥ 10⁻ 10-4 🏹 10^{-5} 10-5 10 10-10⁻⁶ س 10 -برم +/م 10' 10^{1} 10^{2} 10^{1} 10^{2} 10^{1} 10^{2} 10^{1} 10^{2} θ (arcmin) θ (arcmin) θ (arcmin) θ (arcmin) **** ¥ 10⁻ 10 galaxy clustering Rodriguez-Monroy+ 10-5 10° 10⁻⁶سٰ ^س 10⁻⁶ 10^{-1} ≥ 10-2 Δξ+/σ_{ξ+} 10 10-3 10 W A ++++ 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} θ (arcmin) θ (arcmin) θ (arcmin) θ (arcmin) θ (arcmin) 10^{1} 10^{2} 101 10^{2} 10^{1} 10^{2} 10^{1} 10^{2} θ (arcmin) θ (arcmin) θ (arcmin) θ (arcmin)

Points in grey regions not used in the cosmological analysis.

Beyond Stage IV

Snowmass: Flaugher+ 2022

Beyond Stage IV

Exploit information at redshifts z > 2

Snowmass: Chou+ 2022

The Precision Frontier

- Cosmic surveys will stress-test Λ CDM and may break it.
- Precision as a potential route to new physics.
 - HEP analogy: muon g-2 experiments.
- We know w was very close to -1 during inflation but not equal to it. Theoretical prejudice for Λ not historically well-motivated.
- But estimating (almost) anything to percent-level precision and accuracy is hard:
 - Sources of systematic errors proliferate.
 - DES 3x2pt analysis: 26 nuisance parameters. It's likely that systematic error models will need to become more complex as statistical uncertainties shrink.
- Prediction: cosmologists' lives will be better but harder.