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Dark matter and tidal streams
• In the absence of non-gravitational DM 

interactions, 


• Radial structure


• Shape


• Small-scale structure


• Can tell us about fundamental nature and 
interactions of DM


• MW and its satellites are one of the best places to 
study dark matter structure 


• And tidal streams are one of the best ways to do 
that!

Galaxy rotation curves 

(e.g., Bosma 1978, Rubin)



GD-1; Grillmair & Dionatos (2006); Webb & Bovy (2019)

Malhan et al. (2022)

Pal 5 (Ibata et al. 2016)

S5: Li et al. (2022)



Tidal streams and the MW dark matter halo
• Overall curvature of streams —> large-scale gravitational field


• Dark matter radial profile


• Dark matter shape


• Small-scale perturbations to density/tidal stream track/kinematics —> small-
scale gravitational field


• Dark matter subhalos to low masses


• Other small-scale DM structure (PBHs, halo fluctuations of fuzzy DM)


• Both have confounding factors, but small-scale structure less so



Tidal streams and overall structure 
of the MW dark-matter halo



Dynamical constraints on the shape of the MW halo

• Numerical simulations: inner halo of MW is slightly flattened, c/a ~ 0.8


• Most dynamical observations are insensitive to the halo shape (rotation curve, 
vertical force, pretty much any observation involving disk stars)


• Tidal streams result from tidal disruption of a progenitor object and have 
approx. constant energy 


• ΔE = 0 implies Δɸ = -Δ|v|^2/2 along stream


• Thus, streams directly measure the local gravitational field


• Streams orbit at large |z|/R, so uniquely sensitive to  
halo shape



Data from Gaia, CFHT, and Pan-STARRS
Banik, Bovy, et al. (2021)

GD-1

Webb & Bovy (2019)

Pal 5: ~30 degree, ~symmetric 
around Pal 5 cluster 
(Odenkirchen et al. 2003; 
Starkman, Bovy, & Webb 2020)

Pal 5

Pal 5: 
Odenkirchen et 
al. (2003)

GD-1: ~100 degree, no known progenitor 
(Grillmair & Dionatos 2006; Price-Whelan & 
Bonaca 2018)

Bovy et al (2017)

Example: Pal 5 and GD-1



Bovy et al (2016b)
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Example: Pal 5 and GD-1 constraints
• Pal 5 and GD-1 observations measure force at (R,z) ~ (8.4,16.8) kpc and (R,z) ~ (12.5,6.5) kpc, resp.


• Add Pal 5 and GD-1 force measurements to other measurements of the potential of the Milky Way 
(rotation curve [Bovy et al. 2012, McClure-Griffiths & Dickey 2007/2016], vertical-force disk curve [Bovy & Rix 2013], large R 
constraints [Xue et al. 2008], bulge constraints,…)


• Previous data essentially has no constraint on halo shape
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Example: Pal 5 and GD-1 constraints
• Pal 5 and GD-1 observations measure force at (R,z) ~ (8.4,16.8) kpc and (R,z) ~ (12.5,6.5) kpc, resp.


• Add Pal 5 and GD-1 force measurements to other measurements of the potential of the Milky Way 
(rotation curve [Bovy et al. 2012, McClure-Griffiths & Dickey 2007/2016], vertical-force disk curve [Bovy & Rix 2013], large R 
constraints [Xue et al. 2008], bulge constraints,…)


• Previous data essentially has no constraint on halo shape


• Adding Pal 5 / GD-1: c/a = 1.05 +/- 0.14
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Streams and the dark-
matter halo shape
• Current constraints c/a ~ 1.06 +/- 0.06 (Palau & 

Miralda-Escude 2022)


• Somewhat spherical for standard CDM, but within 
theoretical uncertainty


• Future:


• Much better data from, e.g., DESI, LSST, WFIRST


• Many more streams


• But!


• Theory prediction not very specific


• Confounding factors: bar, LMC perturbation, etc. Bovy (2015); Bovy et al. (2016)



Tidal streams and the small-scale 
dark-matter structure of galactic 
halos





Progenitor globular cluster

Orbit

Orbital variations caused by eccentric orbit



Progenitor globular cluster

Orbit

Orbital variations caused by eccentric orbit



Number of satellites as a probe of dark matter

ITP Zurich

Lya

z=0

Warm DM                  Cold DM• Standard cold dark matter has structure 
(“subhalos”) down to solar-to-Earth mass 
scales, increasing as dN/dM ~ M-2


• Amount of small-scale structure can vary 
significantly in well-motivated models of 
dark matter, such as


• Ultra-light axion-like particles: ~1 kpc de 
Broglie wavelength suppresses bound 
structures below ~1010 Msun or lower


• Warm dark matter (e.g., sterile neutrino): 
<~ 0.5 Mpc free-streaming scale 
suppresses small-scale structure



Subhalo mass function from simulations
• Dark-matter 

only (DMO): 
Subhalo 
fraction:


• ~0.1% of DM 
near the Sun


• Increases to 
tens of % at 
Rvir


• dN/dM ~ M-1.9

•DM+baryons: 
Subhalo 
fraction:

• suppressed 

near the 
disk


• less to 
almost no 
suppressio
n at larger 
radii


• dN/dM ~ M-1.9

• Resolution effects on sub halo disruption are significant: ultra-high-resolution re-
simulations of Via Lactea subhalos in the presence of a disk show only a ~40% reduction 
in the sub halo mass function and no change to its shape (Webb & Bovy 2020)

Garrison-Kimmel et al. (2017)
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Example: Pal 5 and GD-1



Data from Gaia, CFHT, and Pan-STARRS
Banik, Bovy, et al. (2021)

GD-1Pal 5

Bovy et al (2017)

Example: Pal 5 and GD-1
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• GD-1+Pal 5:


• mWDM > 4.6 keV


• Including classical satellites:


• mWDM > 6.3 keV


• +lensing+other MW dwarfs:


• mWDM > 11 keV


• (all 95% confidence)

Warm dark matter

Banik, Bovy, et al. (2021b)
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Banik, Bovy, et al. (2021b)

Alternative DM models



Comparison to strong gravitational lensing
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Adapted from Gilman et al. (2019a)



Advantages and disadvantages of streams and lensing
• Streams:


• Good: local-ish substructure density, possible to do radial variation


• Bad: somewhat unknown formation process, effect of baryonic substructure (GMCs, bar, 
…), limited number of galaxies (MW, future: Local Group)


• Lensing:


• Good: Less baryonic substructure (ellipticals), many galaxies, redshift dependence?


• Bad: line-of-sight sub-halos, influence of overall mass model


• But complementary:


• Consistency cross-checks


• Streams more sensitive to overall number density, lensing to inner structure  
—> constrain models like self-interacting DM that significantly change inner structure



Streams are so sensitive that they are hard to simulate!
Streams in N-body simulations

• You may think that the easiest 
way to predict the structure of 
tidal streams is by letting them 
evolve in N-body simulations


• But streams are so cold that 
they are sensitive to the finite-
particle DM particle mass used 
in simulations


• Need DM mass ~1-100 Msun to 
not have spurious contributions 
to stream density fluctuations


• Flip side: streams sensitive to 
compact DM with masses >1 
Msun

Banik & Bovy (2021)



Future

Hendel & Bovy (unpublished)

Malhan et al. (2022)



Conclusion
• Tidal streams uniquely sensitive to 

large- and small-scale structure of 
the Milky Way’s DM halo


• Inner halo shape ~ spherical, 
consistent with vanilla CDM 
observations


• Dark matter acts as cold dark 
matter on scales down to ~107 
Msun


• Improvement by factor of 10 in 
the next few years


• Galaxy formation in the smallest 
galaxies likely largely unaffected 
by dark-matter physics
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