Search for Dark Matter with Imaging Atmospheric Cherenkov Telescopes and the Cherenkov Telescope Array

Elisa Pueschel UCLA Dark Matter 2023 2023.03.29

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Indirect Searches for Dark Matter

Targets: Milky Way and Beyond

Balance between **signal strength** & astrophysical **backgrounds** Litmus test: consistent signal from multiple targets

Targets: Advantages and Disadvantages

Predicted Gamma-ray Signal

"Particle physics term"

Assuming branching ratio of 1 to a given final state

 $\operatorname{BR}_{f} \frac{\mathrm{d}N_{f}}{\mathrm{d}E} \int_{1 < \epsilon} \rho_{\mathrm{DM}}^{2}(r(s,\theta)) \, ds$

- Spectral shape is a key input!
 - Continuum emission from $\chi\chi$

 \rightarrow quark pairs, lepton pairs, W⁺W⁻, ZZ

- Cut-off at M_X (assuming annihilation)
- "Line" emission from $\chi \chi \rightarrow \gamma X$, X = h, Z, γ

Predicted Gamma-ray Signal

"Astrophysics term"

$$\frac{\mathrm{d}^2 \Phi\left(\langle \sigma v \rangle, J\right)}{\mathrm{d}E \mathrm{d}\Omega} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_\chi^2} \sum_f \mathrm{BR}_f \frac{\mathrm{d}N_f}{\mathrm{d}E} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{DM}}^2 \left(r(s,\theta)\right)$$

J-factor

J-factor depends on

- Dark matter distribution in target
- Distance to target
- Instrument response (point spread function)
- Significant source of uncertainty in extracted limits on (σv)

Cirelli et al. 2011 arXiv:1012.4515

Detecting Gamma Rays

- Imaging Atmospheric Cherenkov Telescopes (IACTs)
 - E ~100 GeV to > 30 TeV
 - Precise energy & angular reconstruction
 - High sensitivity
 - Limited duty-cycle/FOV

H.E.S.S.

MAGIC

Large field of view

Water Cherenkov Technique

- Multiple detection methods
 - E ~ < 1 TeV 1 PeV
 - Large duty-cycle
 - Large field of view

Imaging Atmospheric Cherenkov Technique

e.g. VERITAS

Photomultiplier tube cameras for faint & fast signal

Searches for Dark Matter Annihilation

Annihilation in the Galactic Center: Continuum Emission

H.E.S.S. collaboration 2022 arXiv:2207.10471

DESY.

Annihilation in the Galactic Center: Continuum Emission

H.E.S.S. collaboration 2022 arXiv:2207.10471

DESY.

Annihilation in the Galactic Center: Line Emission

- H.E.S.S. location \rightarrow good visibility for Galactic Center
- Earlier survey observations of inner region of Galactic halo (254 hours, 4 telescopes)

Approaching thermal relic cross section (note loop suppression)

• Gaussian "line" at $E_{\gamma} = M_{\chi}$ with width set by H.E.S.S. energy resolution @ E_{γ}

H.E.S.S. collaboration 2018 arXiv:1805.05741

Annihilation in the Galactic Center: Line Emission

Similar limits from MAGIC with 223 hours of observation

MAGIC collaboration 2022 arXiv:2212.10527

Annihilation in Dwarf Spheroidal Galaxies

H.E.S.S.	Live time		
	(hours)		
Reticulum II	18.3		
Tucana II	16.4		
Tucana III	23.6		
Tucana IV	12.4		
Grus II	11.3		

MAGIC	Exposure (hours)
Coma	49.5
Berenices	
Draco	52.1
Ursa Major II	94.8
Segue 1	157.9

VERITAS	Exposure (hours)
Segue 1	92.0
Draco	49.8
Ursa Minor	60.4
Boötes 1	14.0
Willman 1*	13.6

 $\tau^+\tau^-$

MAGIC - 354h dSphs combined (this work)

10⁴

VERITAS - 216h dSphs combined

Fermi-LAT - 6y dSphs combined

H.E.S.S. - 80h dSphs combined

HAWC - 1038d dSphs combined

m_{DM} [GeV] VERITAS collaboration 2017 arXiv:1703.04937

10⁵

Annihilation in Dwarf Spheroidal Galaxies

95% Present consistent picture 10-2 Groundwork: MAGIC + Fermi-LAT 10^{-2} combined likelihood analysis 10-2 (arXiv:1601.06590) Fermi-LAT+MAGIC Segue H_o median MAGIC Segue 1 Combine Fermi-LAT, H.E.S.S., 10-27 H_n 68% containment Fermi-LAT H₂ 95% containment Thermal relic cross section 10^{-2}

Instrument 1 w/o | nuisance Instrument 2 w/o | nuisance Instrument 3 w/o J nuisance 4 Instrument 4 w/o J nuisance Combination w/o J nuisance Combination w/ J nuisance 3 2.71 (95% C.L.) TS 1 0 . 10⁻²³ 10-24 10-22 10-25 10^{-21} $\langle \sigma v \rangle [cm^3/s]$

- Each instrument performs likelihood analysis with internal software
- Common statistical format

H_o median

- Share high-level data
- Common expected signal inputs
 - Expected photon spectrum from Cirelli et al. 2011 (arXiv:1012.4515)
 - Identical J-factors

10⁻²⁷ 10-27 H_o 68% containment Fermi-LAT H₆ 68% containment Joint Dark Matter Limits from Gam H₀ 95% containment Thermal relic 10^{2} m_{DM} [GeVI)

- Combine gamma-ray results
 - Improve statistical power •

MAGIC, VERITAS, HAWC datasets

Fermi-LAT+MAGIC Segue

H_n median

MAGIC Segue 1

Joint Gamma-ray Limits: Observation Summary

Dwarf Spheroidal Galaxy	IACT	IACT Exposure (hours)	HA	WC
Böotes I	VERITAS	14.0	\checkmark	
Canes Venatici I			\checkmark	
Canes Venatici II			\checkmark	
Carina	H.E.S.S.	23.7		
Coma Berenices	H.E.S.S., MAGIC	11.4, 49.5	\checkmark	
Draco	MAGIC, VERITAS	52.1, 49.8	\checkmark	
Fornax	H.E.S.S.	6.8		
Hercules			\checkmark	
Leo I			\checkmark	
Leo II			\checkmark	
Leo IV			\checkmark	
Leo V				Fermi-LAT exposure
Leo T				on all objects
Sculptor	H.E.S.S.	11.8		
Segue 1	MAGIC, VERITAS	158.0, 92.0	\checkmark	
Segue 2				
Sextans			\checkmark	
Ursa Major I			\checkmark	
Ursa Major II	MAGIC	94.8	\checkmark	
Ursa Minor	VERITAS	60.4		

- 20 dwarf spheroidal galaxies observed, including classical and ultrafaint objects
- ~625 hours IACT, 10 years Fermi-LAT, ~1000 days HAWC observations

Joint Gamma-ray Limits: Results

No signal observed; extract 95% confidence level limits on dark matter annihilation cross section

Factor 2-3 improvement in limits Consistency between observed and expected limits

Beyond WIMPs: Ultra-heavy Dark Matter

production of ultra-heavy dark matter

Carney et al. 2022 arXiv:2203.06508

- Searches with IACTs motivated by TeV-scale weakly interacting massive particles ($M_X \sim 0.1 1$ TeV)
 - More phase space to explore
 - Current & future instruments detect gamma rays that access > 100 TeV dark matter annihilation

Unitarity Bound and Ultra-heavy Dark Matter

production of ultra-heavy dark matter

Simple thermal-relic scenario with point-like DM particle \rightarrow heavy DM (>~100-200 TeV) overproduced

$$\langle \sigma v
angle_{max} \propto \overline{M_\chi^2}$$
 (unitarity limit)
and $\Omega_\chi \propto rac{1}{\langle \sigma v
angle}$ (thermal relic)

1

/ \

Carney et al. 2022 arXiv:2203.06508

- Unitarity bound can be evaded with various extensions
 - Dark sector: Berlin et al. 2016 (arXiv:1602.08490),...
 - Composite DM (with/without geometrical cross section): Baldes et al. 2022 (arXiv:2110.13926), Harigaya et al. 2019 (arXiv:1606.00159), Contino et al. 2019 (arXiv:1811.06975),...
 - Capture to bound states: Geller et al. 2018 (arXiv:1802.07720),...

From TeV Gamma Rays to PeV Dark matter

Study sensitivity to UHDM annihilation for three instruments

Tak et al. 2022 arXiv:2208.11740

- All instruments considered detect gamma rays up to ~100 TeV
 - Corresponds to a much heavier initial dark matter particle

>10% flux deposited in <100 TeV gamma rays for DM particles up to PeV masses

From TeV Gamma Rays to PeV Dark matter

Study sensitivity to UHDM annihilation for three instruments

Tak et al. 2022 arXiv:2208.11740

>10% flux deposited in <100 TeV gamma rays for DM particles up to PeV masses

Expected Limits in Theoretical Context

- Expected limits (95% confidence level) on annihilation cross section based on (shallow) observations of Segue 1
- Constrain benchmark scenario set by partial-wave unitarity below 100 TeV
- Constrain benchmark scenarios set by composite unitarity for particle radius > (100 MeV)⁻¹

 M_{χ} [TeV]

 M_{χ} [TeV]

Expected Observed UHDM Limits from VERITAS

VERITAS collaboration 2023 arXiv:2302.08784

- Repurpose published VERITAS dwarf spheroidal observations for UHDM search
- Constraining limits <200 TeV for benchmark scenario considering partial-wave unitarity bound
- Set limits on radius of a composite particle with a geometric cross section

Z

γ νν

Prospectives: Cherenkov Telescope Array

- **Two arrays** for observations of northern and southern sky (La Palma & Paranal)
- Three telescope sizes for broad energy coverage
 - LSTs (23 m diameter dish), MSTs (12 m), SSTs (4 m)

Cherenkov Telescope Array: Alpha Array

- **Two arrays** for observations of northern and southern sky (La Palma & Paranal)
- Three telescope sizes for broad energy coverage
 - LSTs (23 m diameter dish), MSTs (12 m), SSTs (4 m)

Prototyping & Construction

- Prototypes well-advanced for all telescope types
- First LST finishing commissioning, further LSTs in production
- MST/SST production and start of further construction upcoming

CTA Flux Sensitivity

- Factor of 5-20 improvement in sensitivity
- Factor of ~5 improvement angular & energy resolution
- Better performance for all dark matter targets: Galactic Center, dwarf spheroidal galaxies, galaxy clusters, dark matter subhalos...

Dark Matter in the Galactic Center with CTA

CTA consortium 2021 arXiv:2007.16129

CTA Dark Matter Limits in Context

- Galactic Center survey: 100 hr
- Projected limits on
 - Effective field theory operators with Dirac fermion DM
 - Mediator mass for simplified models with Dirac fermion DM
- Compare with direct detection
 & collider prospects

CTA Dark Matter Limits in Context

Correct DM relic

Conclusions

z=0.0

- Indirect dark matter searches with imaging atmospheric Cherenkov telescopes necessary part of search strategy
 - Complement direct detection and collider searches
 - Subject to substantial uncertainties (J-factor estimation, halo models)
 - Effort to quantify impact on limits
- Limits begin to probe expected cross-sections for weak-scale interaction
 - Fermi-LAT provides most sensitive limits below few hundred GeV
 - IACTs provide most sensitive limits above few hundred GeV

Dwarf Spheroidal J-factors

Name	Distance (kpc)	l,b (°)	$\log_{10} J \left(\mathcal{GS} \text{ set} \right) \\ \log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$	$\frac{\log_{10} J \left(\mathcal{B} \text{ set} \right)}{\log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})}$
Boötes I	66	358.08, 69.62	$18.24_{-0.37}^{+0.40}$	$18.85^{+1.10}_{-0.61}$
Canes Venatici I	218	74.31, 79.82	$17.44_{-0.28}^{+0.37}$	$17.63_{-0.20}^{+0.50}$
Canes Venatici II	160	$113.58,\ 82.70$	$17.65_{-0.43}^{+0.45}$	$18.67^{+1.54}_{-0.97}$
Carina	105	260.11, -22.22	$17.92^{+0.19}_{-0.11}$	$18.02\substack{+0.36\\-0.15}$
Coma Berenices	44	$241.89,\ 83.61$	$19.02^{+0.37}_{-0.41}$	$20.13^{+1.56}_{-1.08}$
Draco	76	$86.37, \ 34.72$	$19.05_{-0.21}^{+0.22}$	$19.42_{-0.47}^{+0.92}$
Fornax	147	237.10, -65.65	$17.84_{-0.06}^{+0.11}$	$17.85_{-0.08}^{+0.11}$
Hercules	132	$28.73, \ 36.87$	$16.86^{+0.74}_{-0.68}$	$17.70^{+1.08}_{-0.73}$
Leo I	254	$225.99, \ 49.11$	$17.84_{-0.16}^{+0.20}$	$17.93\substack{+0.65\\-0.25}$
Leo II	233	$220.17,\ 67.23$	$17.97^{+0.20}_{-0.18}$	$18.11_{-0.25}^{+0.71}$
Leo IV	154	$265.44, \ 56.51$	$16.32^{+1.06}_{-1.70}$	$16.36^{+1.44}_{-1.65}$
Leo V	178	261.86, 58.54	$16.37^{+0.94}_{-0.87}$	$16.30^{+1.33}_{-1.16}$
Leo T	417	$214.85, \ 43.66$	$17.11_{-0.39}^{+0.44}$	$17.67^{+1.01}_{-0.56}$
Sculptor	86	287.53, -83.16	$18.57\substack{+0.07\\-0.05}$	$18.63_{-0.08}^{+0.14}$
Segue I	23	220.48, 50.43	$19.36\substack{+0.32 \\ -0.35}$	$17.52^{+2.54}_{-2.65}$
Segue II	35	149.43, -38.14	$16.21^{+1.06}_{-0.98}$	$19.50^{+1.82}_{-1.48}$
Sextans	86	$243.50, \ 42.27$	$17.92^{+0.35}_{-0.29}$	$18.04_{-0.28}^{+0.50}$
Ursa Major I	97	159.43, 54.41	$17.87_{-0.33}^{+0.56}$	$18.84_{-0.43}^{+0.97}$
Ursa Major II	32	$152.46,\ 37.44$	$19.42_{-0.42}^{+0.44}$	$20.60^{+1.46}_{-0.95}$
Ursa Minor	76	$104.97, \ 44.80$	$18.95_{-0.18}^{+0.26}$	$19.08^{+0.21}_{-0.13}$

Galactic Center Components

Dwarf Spheroidal J-factors

Name	Distance (kpc)	l,b (°)	$\log_{10} J \left(\mathcal{GS} \text{ set} \right) \\ \log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$	$\frac{\log_{10} J \left(\mathcal{B} \text{ set} \right)}{\log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})}$
Boötes I	66	358.08, 69.62	$18.24_{-0.37}^{+0.40}$	$18.85^{+1.10}_{-0.61}$
Canes Venatici I	218	74.31, 79.82	$17.44_{-0.28}^{+0.37}$	$17.63_{-0.20}^{+0.50}$
Canes Venatici II	160	$113.58,\ 82.70$	$17.65_{-0.43}^{+0.45}$	$18.67^{+1.54}_{-0.97}$
Carina	105	260.11, -22.22	$17.92^{+0.19}_{-0.11}$	$18.02\substack{+0.36\\-0.15}$
Coma Berenices	44	$241.89,\ 83.61$	$19.02^{+0.37}_{-0.41}$	$20.13^{+1.56}_{-1.08}$
Draco	76	$86.37, \ 34.72$	$19.05_{-0.21}^{+0.22}$	$19.42_{-0.47}^{+0.92}$
Fornax	147	237.10, -65.65	$17.84_{-0.06}^{+0.11}$	$17.85_{-0.08}^{+0.11}$
Hercules	132	$28.73, \ 36.87$	$16.86^{+0.74}_{-0.68}$	$17.70^{+1.08}_{-0.73}$
Leo I	254	$225.99, \ 49.11$	$17.84_{-0.16}^{+0.20}$	$17.93\substack{+0.65\\-0.25}$
Leo II	233	$220.17,\ 67.23$	$17.97^{+0.20}_{-0.18}$	$18.11_{-0.25}^{+0.71}$
Leo IV	154	$265.44, \ 56.51$	$16.32^{+1.06}_{-1.70}$	$16.36^{+1.44}_{-1.65}$
Leo V	178	261.86, 58.54	$16.37^{+0.94}_{-0.87}$	$16.30^{+1.33}_{-1.16}$
Leo T	417	$214.85, \ 43.66$	$17.11_{-0.39}^{+0.44}$	$17.67^{+1.01}_{-0.56}$
Sculptor	86	287.53, -83.16	$18.57\substack{+0.07\\-0.05}$	$18.63_{-0.08}^{+0.14}$
Segue I	23	220.48, 50.43	$19.36\substack{+0.32 \\ -0.35}$	$17.52^{+2.54}_{-2.65}$
Segue II	35	149.43, -38.14	$16.21^{+1.06}_{-0.98}$	$19.50^{+1.82}_{-1.48}$
Sextans	86	$243.50, \ 42.27$	$17.92^{+0.35}_{-0.29}$	$18.04\substack{+0.50\\-0.28}$
Ursa Major I	97	159.43, 54.41	$17.87_{-0.33}^{+0.56}$	$18.84_{-0.43}^{+0.97}$
Ursa Major II	32	$152.46,\ 37.44$	$19.42_{-0.42}^{+0.44}$	$20.60^{+1.46}_{-0.95}$
Ursa Minor	76	$104.97, \ 44.80$	$18.95_{-0.18}^{+0.26}$	$19.08^{+0.21}_{-0.13}$