

"DARK MATTER PARTICLE CANDIDATES" ... BEYOND THE WIMP

Kathryn M. Zurek

WHY DARK MATTER? (WHY NEW PARTICLE PHYSICS?)

 The dark matter paradigm is the only successful framework for understanding the entire range of observations from the time the Universe is 1 sec old.

- WIMP paradigm: a good place to start looking
- Reason: weak forces have the right scale, for abundance, cosmology and detection

$$\sigma_{wk} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \simeq 10^{-34} \text{ cm}^2 \left(\frac{100 \text{ GeV}}{M}\right)^2$$

SETTING ABUNDANCE THROUGH INTERACTIONS WITH SM

Freeze-out paradigm

- WIMP paradigm: a good place to start looking
- Reason: weak forces have the right scale, for abundance, cosmology and detection

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

Cross-sections are too small to have relevant impacts on structure formation

$$\sigma_{SIDM} \lesssim 10^{-24} \ \mathrm{cm}^2/\mathrm{GeV}$$

Interaction cross-sections with nuclei are detectable

$$\sigma_{wk} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \simeq 10^{-34} \text{ cm}^2 \left(\frac{100 \text{ GeV}}{M}\right)^2$$

DETECTABLE INTERACTION RATES

WIMP: not dead but continually pressured

Z-boson interacting dark matter: ruled out

Higgs interacting dark matter: active target

BLOB CLOSURE DECEPTIVE

- "Pure" neutralino does not couple to Higgs at tree level
- e.g. pure Wino or Higgsino or Bino
- One-loop: wino not quite detectable
- But, Wino has detectable
 indirect detection signature
 through coupling to gauge
 bosons
- Cherenkov telescopes have (unique) sensitivity to such weak dark matter

BLOB CLOSURE DECEPTIVE

- "Pure" neutralino does not couple to Higgs at tree level
- e.g. pure Wino or Higgsino or Bino
- One-loop: wino not quite detectable
- But, Wino has detectable
 indirect detection signature
 through coupling to gauge
 bosons
- If profile is steep enough (NFW), even Higgsino may be reachable

BLOB CLOSURE DECEPTIVE

- "Pure" neutralino does not couple to Higgs at tree level
- e.g. pure Wino or Higgsino or Bino
- One-loop: wino not quite detectable
- But, Wino has detectable
 indirect detection signature
 through coupling to gauge
 bosons
- If profile is steep enough (NFW), even Higgsino may be reachable

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

- Heavier dark matter: setting relic abundance through interactions with Standard Model is challenging (NB: exceptions)
- At heavier masses, detection through Standard Model interactions is (generally) not motivated by abundance

- Look for gravitational means to detect structure
- Above $10^{-13} M_{\odot}$ Pulsar timing can be effective
- Project of the (far) future to use laboratory clocks to detect small gravitational redshift effects

GRAVITATIONAL EFFECTS OF DARK MATTER SUBSTRUCTURE

Pulsars, observed over decades, are accurate clocks — the time-of-arrival of a pulse is very stable

GRAVITATIONAL EFFECTS OF DARK MATTER SUBSTRUCTURE

Pulsars, observed over decades, are accurate clocks — the time-of-arrival of a pulse is very stable

Gresham, Lee, KZ 2209.03963

Gravitational-only interactions — *future*

DM-baryon 5th force **currently** constrained by PTAs

- Ultralight dark matter: dark matter behaves like a wave rather than an individual particle, e.g. axion
- Detection techniques focus on utilizing this coherence
- Cavities, AMO techniques

ULTRALIGHT DARK MATTER AND DARK CLUMPS

- Theories of dark matter predict departures from scale invariant density perturbations on small scales
- Axion dark matter (symmetry breaks after inflation):

MC mass set by DM mass in horizon at QCD PT

ULTRALIGHT DARK MATTER AND DARK CLUMPS

- Theories of dark matter predict departures from scale invariant density perturbations on small scales
- Axion dark matter (symmetry breaks after inflation):

Shen, Xiao et al 2207.11276

MC mass set by DM mass in horizon at QCD PT

DETECTING WAVELIKE DARK MATTER

Use Dark Matter Coherence

Dark Matter Candidates

- Intermediate range where observation via particle interactions with SM is still highly motivated though not detectable with traditional WIMP experiments
- Arise generically in top-down constructions

- Dark sector dynamics are complex and astrophysically relevant. $\sigma_{str} \simeq \frac{4\pi\alpha_s^2}{M^2} \simeq 10^{-24} \text{ cm}^2 \left(\frac{1 \text{ GeV}}{M}\right)^2$
- Abundance may still be set by (thermal) population from SM sector

$$\sigma_{wk} v_{fo} \simeq \frac{g_{wk}^4 \mu_{XT}^2}{4\pi m_Z^4} \frac{c}{3} \simeq 10^{-24} \frac{\text{cm}^3}{\text{s}} \left(\frac{100 \text{ GeV}}{M}\right)^2$$

PARADIGM SHIFT

Our thinking has shifted

From a single, stable very weakly interacting particle (WIMP, axion)

> Models: Light DM sectors, Secluded WIMPs, Dark Forces, Asymmetric DM Production: freeze-in, freeze-out and decay, asymmetric abundance, non-thermal mechanisms

...to a hidden world or "hidden valley" with multiple states, new interactions

 $M_p \sim 1 \text{ GeV}$

Standard Model

Inaccessibility

Energy

Chemical Potential Dark Matter

Visible

Dark

Asymmetric DM

"Integrate out" heavy state Higher dimension operators:

 $Xu^c d^c d^c$

X

Review: 1308.0338

$m_p \sim 1 \,\,\mathrm{GeV}$

Standard Model

Inaccessibility

Dark Matter (Hidden Valley/Sector)

Chemical Potential Dark Matter

Another way to stop the annihilation is simply to run out of anti-particles. This is what happens with baryons in the SM.

Anti-matter Matter

 $n_X \sim 10^{-10} T^3$

CROSSING SYMMETRY

TOWARDS HIDDEN SECTOR DARK MATTER

Developments in condensed matter make this possible

???

LOOKING BEYOND BILLIARD BALLS

Experimental Panorama

COLLECTIVE EXCITATIONS

When deBroglie wavelength is longer than inter-article spacing, collective excitations are relevant degrees-offreedom

OPTICAL PHONONS IN POLAR MATERIALS

Griffin, Inzani, Trickle, Zhang, KZ, 1910.10716

- Rather than depositing kinetic energy, entire mass energy can be absorbed.
- How about 1-100 meV mass axions?

OUTLOOK

The landscape of DM candidates has exploded

- The universe is dominated by invisibles!
- *WIMP or (axion)*
 - How to be ready for anything? Hidden Sectors
 - How do we search for these things?

• How do we evaluate dark matter candidates and prioritize directions to pursue?

OUTLOOK

How do we evaluate dark matter candidates and prioritize directions to pursue?