lssue 24, 202	1
---------------	---

Previous Article Ne

Next Article

From the journal: Physical Chemistry Chemical Physics

https://arxiv.org/pdf/1807.09253.pdf

Demonstration of neutron radiationinduced nucleation of supercooled water⁺

Check for updates

 Matthew Szydagis, ID *ª Cecilia Levy, ID *ª Yujia Huang,ª Alvine C. Kamaha,ª Corwin C. Knight,ª

 Gregory R. C. Rischbieter ID ª and Peter W. Wilson ID *bc

 https://pubs.rsc.org/en/content/

 articlelanding/2021/cp/d1cp01083b

The Snowball Chamber: Supercooled Water for Dark Matter, Neutrinos, and General Particle Detection

What is Supercooling?

- A liquid is cooled below its normal freezing point, not using freezing point depression (e.g., salting the sidewalk)
 - _ Metastable
 - Requires high purity and a clean, smooth container, just like with superheating liquid (heating above the boiling point)
- Freezing occurs when the liquid finds a nucleation site, or it has otherwise been "disturbed" (sound, electric fields)
 - One cannot stop nucleation: it snowballs
 - The process is highly exothermic: see the cartoon at the right
- Smaller samples are easier to cool
 - Min temperature depends on radius of sample (Bigg 1953, Mossop 1955)
- Unexplored phase transition in physics!
 - Cloud & bubble chambers both done

Challenges Using Supercooled Water

done before, but only with beta and gammas, most recently by Varshneya (Nature, 1971)

Physics Department, University of Roorkee, India

- Getting as cold as feasible, sans unwanted nucleation as a background
 - If like a bubble chamber except in reverse, colder should be better, because it should mean lower energy threshold
 - Must not just avoid particulates (heterogeneous nucleation) but the homogenous nucleation limit too (this may imply the existence of a lowthreshold asymptote)
- Finding the ideal rate of cooling
 - Too slow means low live-time and/or more opportunity for an unwanted nucleation (from vibration, background radiation, etc.)
 - But too fast means thermal lag/gradient, which encourages nucleation
- The scientific method in its purest form: "let's try it and see" approach
 - Hypothesis: radiation, specifically neutrons, is/are able to freeze supercooled water

Prototype Detector Setup

- 20 g (20 mL) of purified water contained in a smooth, cleaned fused quartz vessel
 - The water is processed through multiple filters, deionized, and ultimately distilled through a 20-nm flat-sheet non-linear membrane (only gas can pass through)
- Thermocouple thermometers (all used)
 - 3: top, middle, and bottom -- to see that "exothermic spike" <=</p>
- Borescope camera for image acquisition
 - Only 1, so no 3-D info, but counted # of scatters
- Coincident counter under vessel, aligned
 - Plastic scintillator with attached SiPM

Electron Microscope Images of a Membrane Filter (Novamem)

Detector Operation

- About -20 °C and lower achieved, at a maximum cooling rate of -2°C per minute
 - Water may be able to go as cold as -40°C (world record: Goy, 2011)
- Partial vacuum of ~8-9 psia (water vapor, after earlier evacuation of the air)
- 1-hour cooling and heating (melting) full cycle, with ~50% time spent < 0°C ("live")
- Multiple run conditions / calibrations
 - Control (no radioactive source)
 - 200 n/s AmBe (with, w/o lead shielding)
 - 10 μ Ci $^{\rm 137}$ Cs gamma-ray source
 - 3,000 n/s ²⁵²Cf (with Pb shielding)
- Shielding stops gammas from interfering with the thermocouples' operation
 - Also makes more n's, alters their E-spec

Some Example Events

Pause for: superCool.mp4

<= triple (2+1) nucleation

Double Crystal Slide Show

Snowmass LOI Submitted

Metastable Water: Breakthrough Technology for Dark Matter & Neutrinos

M. Szydagis¹, C. Levy¹, P. S. Barbeau², A. E. Bolotnikov³, E. Brown⁴, M. C. Carmona-Benitez⁵, G. Cox⁵, L. de Viveiros⁵, M. Diwan³, T. Guile¹, G. Homenides¹, Y. Huang¹, A. Kamaha¹, D. Kodroff⁵, I. Magliocca¹, G.R.C. Rischbieter¹, D. Woodward⁵, and M. Yeh³

> ¹The University at Albany, State University of New York (UAlbany) ²Duke University / Triangle Universities Nuclear Laboratory (TUNL) ³Brookhaven National Laboratory (BNL) ⁴Rensselaer Polytechnic Institute (RPI) ⁵Pennsylvania State University, University Park, PA

> > August 2020

Cosmic Frontier Topical Groups:

(CF1) Cosmic Frontier: Dark Matter: Particle-like

Neutrino Frontier Topical Groups:

(NF04) Neutrino Physics Frontier: Neutrinos from Natural Sources

(NF05) Neutrino Physics Frontier: Neutrino Properties

(NF06) Neutrino Physics Frontier: Neutrino Interaction Cross-Sections

(NF07) Neutrino Physics Frontier: Applications

(NF10) Neutrino Physics Frontier: Neutrino Detectors

Intensity Frontier Topical Groups:

■ (IF6) Instrumentation: Calorimetry

(IF8) Instrumentation: Noble Elements

also gave "Community Voices" talk

Our Most Important First Results

KS test p-values: 6.64 x 10^-5 comparing times Conservatively using only "local" control p = 3.09 x 10^-8
for temperatures!

- Reduction in supercooled time in presence of neutron sources
 - Effect enhanced with lead shielding
 - Bigger effect with stronger source
- * We conclude that neutrons can *freeze* H₂O (1st observation)
 - Alternated the source and BG runs
 - Checked room temp as a systematic

Further Analyses (Cf)

Systematics: AmBe in 2017 and 2018

Across three different thermometers (Why not Cf? Similar study not possible for it)

Gamma-Ray Calibration (137Cs 662 keV)

No statistically significant effect so far from gammas (0.662 MeV energy)

May be a sign of SOME
 e- recoil rejection?

Geant4 Sims of these Data

- Our initial data APPEAR to be following "worst-case scenario" for threshold, but even then extrapolates to O(10 eV) at ~ -30 °C. O(1 eV) across most of lit
- Our snowball chamber appears to have pair of tunable thresholds, just like bubble chamber: one for *E* and one for stopping power or *dE/dx* (or the LET)

Additional MC post-G4

Open question: does neutron MFP match data?

types of events

blind analysis performed, employing large team of undergraduate students scanning photographs

A Preliminary Image Analysis

- Even without a second camera or mirror, can kind of tell wall/surface events
 - Most common, especially in control results
- Still far from perfect by eye
 - So, focus only on counting
- More multiple scatters by a lot in neutron data
 - Confirmation neutrons can cause crystallization
 - Triples, quad seen even

Coincidence Counter Analysis

- Looking for any peak above accidental coincidence probability level

 Done with images
- In progress, but looking promising at least for Cf-252
- Interdisciplinary: of enormous interest to atmospheric science

http://cosmicwatch.lns.mit.edu

Bigger Motivation: Dark Matter

- Continued lack of discovery of dark matter as ~50-100 GeV/c^2 mass WIMP
 - Motivates looking elsewhere
- What is better target for lower-energy recoils, than the lightest possible target element, hydrogen?
 - Hydrogen bubble chamber would be great, but less practical
 - Other ideas exist already, so far from only game in town, even at sub-GeV
- Water is inexpensive and relatively easy to purify even on large scales (SNO, SuperK) while great at moderating n's
 - Cheap and scalable particle detection technology used in past already

Sensitivity to Vanilla Default WIMPs

borrowed plot from the DoE Cosmic Visions Report (arXiv:1707.04591) and overlaid our own curves

- Spin-independent (SI) and spin-dependent (SD)
 Approaching the (lower for H) neutrino "floor"
- Dark photons and axions through e- scattering?

1 kg-year live exposure, at 12 eV energy threshold w/ low BG, underground ->e.g. only 1 kg for 1 yr! 100 kg-years, 16 meV is the lower curve

SI (left) SD-proton (right)

How to Make DM Discovery Possible

D. Barahona, "Thermodynamic derivation of the activation energy for ice nucleation," *Atmospheric Chemistry & Physics*, vol. 15, pp. 13,819–13,831, Dec. 2015. D. Barahona, "On the thermodynamic and kinetic aspects of immersion ice nucleation," *Atmospheric Chemistry and Physics*, vol. 18, no. 23, pp. 17,119–17,141, 2018. [Online]. Available: https://www.atmos-chem-phys.net/18/17119/2018/

V. I. Khvorostyanov and J. A. Curry, "The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part II: Parcel model simulation," *Journal of the Atmospheric Sciences*, vol. 62, no. 2, pp. 261–285, 2005. [Online]. Available: https://doi.org/10.1175/JAS-3367.1

- Unclear whether to use homogeneous or heterogeneous nucleation energy thresholds
 - In either case, sub-keV threshold possible, even subeV
- Around ~240 K or -30 °C there appears to be a "sweet spot" of low threshold and 0 BG (from spontaneous nucleation)
 - Spontaneous rates drop precipitously with higher temperature
 - Analysis considers both the area and the volume

Measurement of Filtration Effect

Min temperature achieved while supercooling before sample freezes

Four 1-mL water samples tested 6 times: each point on plot is set of 24 measurements, complete with statistical and systematic errors bars

Lowest point at right different: that is from the results published in PCCP ₂₁

How to Optimize the Energy, dE/dx Thresholds: An Optimal Temperature!

- Multi-dimensional search for lowest T's and longest supercool control (non-source) times
 Across multiple small samples
- Buffer fluids top and bot, max volume, cooldown rate, initial temp, bath level, container

(Near-)Future Work

With colleague and collaborator Prof. Cecilia Levy

- More cameras (higher FPS)/mirror for 3-D recon
 - Automatic, including event type; snow <u>directionality</u>?
- Lower threshold with lower T, hydrophobicity
 - Volume optimization, of water, and environment
- Increase the livetime (big current drawback, as it is too low). How to melt, then re-freeze?
 - *Modular* detector?
 - Extreme heat, lasers, microwaves, agitation
 - Supercooled droplet detector (ScDD)
- Full Geant4 sim, not just n & γ rates: #vertices
 - Molecular dynamics in more distant future
- The exhaustive characterizations of energy threshold
 - Possibly P too not just T, and more source types
- Hard: secure some \$, start global program (Australia on board: Prof. Peter Wilson)

Geant4

Conclusions, Challenges

- Neutrons can make supercooled water freeze: a new discovery
- They can even multiply scatter, as they do in a bubble chamber!
- At least some types of events are coincident with a scintillator
- There is at least some degree of electron recoil (gamma) discrimination
- What are the actual backgrounds, from random nucleation, alphas,...?
- Energy threshold is not known, but likely sub-keV already at -20°C
- Need to calibrate it better. But looks good for low-mass DM & CEvNS
- Possible tangential relationship to other fields (CLOUD @CERN)
- All in all, this is a very promising start to a RE-discovered technology
- So much more we can do: CEvNS with a low-mass, even-even nucleus?
- D₂O for normalizing low-E neutrino fluxes from stopped pion beams?

Multiple Thanks

https://www.nps.gov/dena/learn/nature/arcticgroundsquirrel.htm

 I wish to also thank my collaborators at UCLA, BNL, RPI, Penn State, and Duke/TUNL, all trying to start a large program with UAlbany

Questions today??

This research was funded by a UAlbany NSF SAGES/WISH award to Prof. Cecilia Levy, SUNY/RF PIFRS & FRAP-A awards for Prof. Matthew Szydagis, and startup

A Few Backup Slides

Calibration Type	$<\Delta t_{act} > [s]$	σ	$< T_{min} > [^{\circ}C]$	σ
Ctrl (no source) '17	$190.6 \ {}^{\pm 2.8}_{\pm 4.2}$	-	-21.46 $^{\pm 0.07}_{\pm 0.09}$	-
AmBe Top no Pb	$183.1 \begin{array}{c} \pm 3.5 \\ \pm 3.2 \end{array}$	-1.1	-21.85 $\pm 0.10 \\ \pm 0.39$	-0.9
AmBe Top yes Pb	$150.5 {\ \pm 4.1 \atop \pm 17}$	-2.2	-20.33 $^{\pm 0.13}_{\pm 0.17}$	4.7
137 Cs γ -ray Top	$201.8 \ ^{\pm 3.6}_{\pm 11}$	0.9	-21.21 $\pm 0.12 \\ \pm 0.23$	0.9
Control 2018	$149.5 {\pm 1.9 \atop \pm 7.6}$	-	-19.63 $^{\pm 0.04}_{\pm 0.19}$	-
FWBe side (thin)	$137.7 \ {}^{\pm 16}_{\pm 0.0}$	-0.7	-19.71 $\substack{\pm 0.29 \\ \pm 0}$	-0.2
FWBe side (thick)	$124.6 \begin{array}{c} \pm 2.9 \\ \pm 9.9 \end{array}$	-1.9	-19.33 $^{\pm 0.07}_{\pm 0.27}$	0.9
AmBe side no Pb	$158.9 \ {}^{\pm 4.9}_{\pm 23}$	0.4	-19.96 $^{\pm 0.09}_{\pm 0.44}$	-0.7
AmBe Top no Pb	$154.9 \ {}^{\pm 3.8}_{\pm 12}$	0.4	-19.73 $^{\pm 0.09}_{\pm 0.31}$	-0.3
AmBe Top yes Pb	113.8 $\pm 4.4 \\ \pm 2.1$	-3.9	-18.88 $^{\pm 0.08}_{\pm 0.01}$	3.5
²⁵² Cf Top yes Pb	$102.5 \begin{array}{c} \pm 4.0 \\ \pm 3.8 \end{array}$	-4.9	$-18.46 \begin{array}{c} \pm 0.07 \\ \pm 0.22 \end{array}$	3.8

time water spent "active" (< -16 °C)

Graphical form of course: numbers don't agree with last slide, because this is with fits

