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What is Supercooling?
• A liquid is cooled below its normal 

freezing point, not using freezing point 
depression (e.g., salting the sidewalk)

– Metastable

– Requires high purity and a clean, smooth 

container, just like with superheating liquid 
(heating above the boiling point)


• Freezing occurs when the liquid finds a 
nucleation site, or it has otherwise been 
“disturbed” (sound, electric fields)

– One cannot stop nucleation: it snowballs

– The process is highly exothermic: see the 

cartoon at the right

• Smaller samples are easier to cool


– Min temperature depends on radius of 
sample (Bigg 1953, Mossop 1955)


• Unexplored phase transition in physics!

– Cloud & bubble chambers both done
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It turns the 
concept of 
the bubble 
chamber  
upside down



Challenges Using Supercooled Water

• Getting as cold as feasible, sans unwanted nucleation as a 
background

– If like a bubble chamber except in reverse, colder should be better, 

because it should mean lower energy threshold

– Must not just avoid particulates (heterogeneous nucleation) but  the 

homogenous nucleation limit too (this may imply the existence of a low-
threshold asymptote)


• Finding the ideal rate of cooling

– Too slow means low live-time and/or more opportunity for an unwanted 

nucleation (from vibration, background radiation, etc.)

– But too fast means thermal lag/gradient, which encourages nucleation


• The scientific method in its purest form: “let’s try it and see” 
approach

– Hypothesis: radiation, specifically neutrons, is/are able to freeze 

supercooled water
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done before, but only with beta and gammas, most recently by Varshneya (Nature, 1971)
Physics Department, University of Roorkee, India



Prototype 
Detector Setup

• 20 g (20 mL) of purified water contained in 
a smooth, cleaned fused quartz vessel

– The water is processed through multiple 

filters, deionized, and ultimately distilled 
through a 20-nm flat-sheet non-linear 
membrane (only gas can pass through)


• Thermocouple thermometers (all used)

– 3: top, middle, and bottom -- to see that 

“exothermic spike” <=

• Borescope camera for image acquisition


– Only 1, so no 3-D info, but counted # of 
scatters


• Coincident counter under vessel, aligned

– Plastic scintillator with attached SiPM
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Electron Microscope Images of a 
Membrane Filter (Novamem)

photos courtesy of Prof. Kathy Dunn, SUNY Poly CNSE



Detector Operation

• About -20 °C and lower achieved, at a 
maximum cooling rate of -2°C per minute

– Water may be able to go as cold as -40°C (world 

record: Goy, 2011)

• Partial vacuum of ~8-9 psia (water vapor, 

after earlier evacuation of the air)

• 1-hour cooling and heating (melting) full 

cycle, with ~50% time spent < 0°C (“live”)

• Multiple run conditions / calibrations


– Control (no radioactive source)

– 200 n/s AmBe (with, w/o lead shielding)

– 10 µCi 137Cs gamma-ray source

– 3,000 n/s 252Cf (with Pb shielding)


• Shielding stops gammas from interfering with 
the thermocouples’ operation

– Also makes more n’s, alters their E-spec 6



Some Example Events
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<= triple (2+1) 
nucleation

Pause for: superCool.mp4
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Snowmass LOI Submitted

also gave “Community Voices” talk
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Our Most Important First Results
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KS test p-values: 6.64 x 10^-5 comparing times 
Conservatively using only “local” control

p =  3.09 x 10^-8

for temperatures!



Further Analyses (Cf)• Reduction in 
supercooled time in 
presence of neutron 
sources

– Effect enhanced with 

lead shielding

– Bigger effect with 

stronger source

* We conclude that 
neutrons can *freeze* 
H2O (1st observation)

– Alternated the source 

and BG runs

– Checked room temp as 

a systematic
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Systematics: AmBe in 2017 and 2018
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Across three different thermometers (Why not Cf? Similar study not possible for it)
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Gamma-Ray Calibration (137Cs 662 keV)
• No 

statistically 
significant 
effect so far 
from gammas 
(0.662 MeV 
energy)

– May be a 

sign of SOME 
e- recoil 
rejection?



Geant4 Sims of 
these Data 

• Our initial data APPEAR to be following “worst-case scenario” for threshold, 
but even then extrapolates to O(10 eV) at ~ -30 °C. O(1 eV) across most of lit


• Our snowball chamber appears to have pair of tunable thresholds, just like 
bubble chamber: one for E and one for stopping power or dE/dx (or the LET)
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A Geant4 
explanation of the 
lead (Pb) effect?

Khvorostyanov and Curry, 2005

	   Electrons	    Protons (Hydrogen)	        Oxygen



Additional MC post-G4
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Open question: does neutron MFP match data?



A Preliminary 
Image Analysis

• Even without a second 
camera or mirror, can kind 
of tell wall/surface events

– Most common, especially 

in control results

• Still far from perfect by eye


– So, focus only on counting

• More multiple scatters by 

a lot in neutron data

– Confirmation neutrons can 

cause crystallization

– Triples, quad seen even
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Single

Surface
Wall

types of events

Double

blind analysis 
performed, 
employing large 
team of 
undergraduate 
students 
scanning 
photographs
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Coincidence Counter Analysis

MIT

http://cosmicwatch.lns.mit.edu

• Looking for any peak 
above accidental 
coincidence 
probability level

– Done with images


• In progress, but 
looking promising at 
least for Cf-252


• Interdisciplinary: of 
enormous interest to 
atmospheric science

http://cosmicwatch.lns.mit.edu
http://cosmicwatch.lns.mit.edu


Bigger Motivation: Dark Matter

• Continued lack of discovery of dark 
matter as ~50-100 GeV/c^2 mass WIMP

– Motivates looking elsewhere


• What is better target for lower-energy 
recoils, than the lightest possible target 
element, hydrogen?

– Hydrogen bubble chamber would be great, 

but less practical

– Other ideas exist already, so far from only 

game in town, even at sub-GeV

• Water is inexpensive and relatively easy 

to purify even on large scales (SNO, 
SuperK) while great at moderating n’s

– Cheap and scalable particle detection 

technology used in past already

musqot.com

Snowmass 2013

xkcd.com
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Honoré Daumier, “Mr. Babinet, 
warned by his concierge of the 
arrival of the comet”, illustration for 
Le Charivari, 22 Sept., 1858.
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Sensitivity to Vanilla Default WIMPs

• Spin-independent (SI) and spin-dependent (SD)

– Approaching the (lower for H) neutrino “floor”


• Dark photons and axions through e- scattering?

1 kg-year live exposure, 
at 12 eV energy 
threshold w/ low BG, 
underground

->e.g. only 1 kg for 1 yr!

100 kg-years, 16 meV is 
the lower curve


SI (left)

SD-proton (right)

borrowed plot from the DoE Cosmic Visions Report (arXiv:1707.04591) and overlaid our own curves

fraction of the cost (and complications) of competing experiments at 100 MeV to 10 GeV! Potentially self-confirming

Conservative


Aggressive



How to Make DM Discovery Possible
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• Unclear whether to use 
homogeneous or 
heterogeneous nucleation 
energy thresholds

– In either case, sub-keV 

threshold possible, even sub-
eV


• Around ~240 K or -30 °C there 
appears to be a “sweet spot” 
of low threshold and 0 BG 
(from spontaneous nucleation)

– Spontaneous rates drop 

precipitously with higher 
temperature


– Analysis considers both the 
area and the volume



Measurement of Filtration Effect
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Min temperature 
achieved while 
supercooling before 
sample freezes


Four 1-mL water samples 
tested 6 times: each point 
on plot is set of 24 
measurements, complete 
with statistical and 
systematic errors bars


Lowest point at right 
different: that is from the 
results published in PCCP

“purity” refers to filter pore size 
for removing particulates

PRELIMINARY



How to Optimize the Energy, dE/dx 
Thresholds: An Optimal Temperature!

• Multi-dimensional search for lowest T’s and 
longest supercool control (non-source) times

– Across multiple small samples


• Buffer fluids top and bot, max volume, cool-
down rate, initial temp, bath level, container
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(Near-)Future Work
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• More cameras (higher FPS)/mirror for 3-D 
recon

– Automatic, including event type; snow 

directionality?

• Lower threshold with lower T, hydrophobicity


– Volume optimization, of water, and environment

• Increase the livetime (big current drawback, as 

it is too low). How to melt, then re-freeze?

– Modular detector?

– Extreme heat, lasers, microwaves, agitation

– Supercooled droplet detector (ScDD)


• Full Geant4 sim, not just n & γ rates: #vertices

– Molecular dynamics in more distant future


• The exhaustive characterizations of energy 
threshold

– Possibly P too not just T, and more source types


• Hard: secure some $, start global program 
(Australia on board: Prof. Peter Wilson)

Geant4

CAD

hydrophobic coat 
(SUNY Poly)

for inner vessel

With colleague and collaborator  Prof. Cecilia Levy

new outer vessel 
(Shruti De)



Conclusions, Challenges

• Neutrons can make supercooled water freeze: a new discovery

• They can even multiply scatter, as they do in a bubble chamber!

• At least some types of events are coincident with a scintillator

• There is at least some degree of electron recoil (gamma) discrimination

• What are the actual backgrounds, from random nucleation, alphas,...?

• Energy threshold is not known, but likely sub-keV already at -20°C

• Need to calibrate it better. But looks good for low-mass DM & CEvNS

• Possible tangential relationship to other fields (CLOUD @CERN)

• All in all, this is a very promising start to a RE-discovered technology

• So much more we can do: CEvNS with a low-mass, even-even nucleus?

• D2O for normalizing low-E neutrino fluxes from stopped pion beams?
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Multiple Thanks

• I wish to also thank my collaborators at UCLA, 
BNL, RPI, Penn State, and Duke/TUNL, all trying 
to start a large program with UAlbany


• Questions today??
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A Few Backup Slides
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Calvin & Hobbes, by Bill Watterson
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time water spent “active” (< -16 °C)
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Graphical form of course: numbers don’t agree with last slide, because this is with fits
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