ANAIS-112: testing DAMA/LIBRA signal beyond three sigma

María Martínez, CAPA (U. Zaragoza) on behalf of the ANAIS team UCLA DM 2023, Los Angeles, March 29- April 1 2023

Física de Altas Energías

ANAIS-112

....

Ŵ

Universidad

SC

Zaragoza

Annual Modulation with Nal Scintillators https://gifna.unizar.es/anais/

J. Amaré, J. Apilluelo, S. Cebrián, D. Cintas, I. Coarasa, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, T. Pardo, J. Puimedón, A. Salinas, M.L. Sarsa, P. Villar

<u>GOAL:</u> Confirmation/refutation of DAMA-LIBRA modulation signal with the same target and technique (but different experimental approach and environmental conditions)

Projected sensitivity: 3 σ in 5 years data-taking

<u>WHERE:</u> At Canfranc Underground Laboratory, @ **SPAIN** (under **2450 m.w.e.**)

taking data since August 2017

M. Martinez, CAPA (U. Zaragoza)

M. Martinez, CAPA (U. Zaragoza)

Event selection

EPJC (2019) 79:228

4

Background @ ROI and event selection efficiency

Data vs background model

activity from external components measured with HPGe Nal(TI) crystals Geant4 MC simulation including: + copper encapsulation • internal and cosmogenic activity directly assessed from data. At very low energy (<20 keV), main contribution to background from internal contamination: PMTs + copper encapsulation ⁴⁰K and ²²Na (T_{1/2} = 2.6 y) peaks • ²¹⁰**Pb** (bulk+surface) (T_{1/2} = 22.3 y) • ³**H** ($T_{1/2}$ = 12.3 y) Inner box ¹⁰E Lead shielding cpd/kg/keV ROI 9 **ANAIS** data Cosmogenic isotopes (³H, ²²Na, ...) and ²¹⁰Pb are decaying **ANAIS MC** 8 7 6 5 4 3 \rightarrow Our MC model reproduce satisfactorily the time evolution for DAMA non-blinded populations 2.4 M1 [6-10] keV M2 [1-6] keV 30 days Rate (cpd/kg/keV) 570 570 rate = (0.532±0.172)exp(-t/(1846±828)) (cpd/kg/keV) rate = (0.053±0.003)exp(-t/(369±69)) (cpd/kg/keV) Rate (cpd/kg/keV) χ^2 /NDF = 89.3 / 107 [pval=0.89] χ^2 /NDF = 120.6 / 107 [pval=0.17] unblinded data **Bkg model** f=1.038 f=0.949 0.2 500 1000 500 1000 days after August 3, 2017 days after August 3, 2017 energy (keV)2 6

Μ. Ινιαι ιπεζ, υπιπ τυ. ζαι αβυζα

UCLA DM, Los Angeles March 30 - April 1, 2023

Annual modulation analysis

Blind analysis focus on model independent analysis searching for modulation

- In order to better compare with DAMA/LIBRA results
 - use the same energy regions ([1-6] keV, [2-6] keV)
 - fix period 1 year and phase to June 2nd

• Simultaneous fit of the 9 detectors. 10 days bins. ChiSquare minimization: $\chi^2 = \sum (n_i - \mu_i)^2 / \sigma_i^2$

where the expected number of events μ_i for detector d in time bin i is given by:

 $\mu_{i,d} = \left[R_{0,d} (1 + f_d \phi_{bkg,d}^{MC}(t_i) + \mathbf{S}_m \cos(\omega(t_i - t_0)) \right] M_d \Delta E \Delta t$

Annual modulation analysis

Blind analysis focus on model independent analysis searching for modulation

- In order to better compare with DAMA/LIBRA results
 - use the same energy regions ([1-6] keV, [2-6] keV)
 - fix period 1 year and phase to June 2nd

• Simultaneous fit of the 9 detectors. 10 days bins. ChiSquare minimization: $\chi^2 = \sum (n_i - \mu_i)^2 / \sigma_i^2$

where the expected number of events μ_i for detector d in time bin i is given by:

3-years results (313.95 kg x y)

PRD 103, 102005 (2021)

M. Martinez, CAPA (U. Zaragoza)

3-years results (313.95 kg x y)

Energy region	χ^2/NDF null hyp	S _m cpd/kg/keV	p-value mod	p-value null
[1-6] keV	1076 / 972	-0.0034 ± 0.0042	0.011	0.011
[2-6] keV	1018 / 972	$0.0003 {\pm} 0.0037$	0.14	0.15

- Compatible results for 3 different background descriptions / fit approaches
- Data supports the null hypothesis (lower p-value for [1-6] keV mainly due to detectors 1 and 5)
- For the modulation hypothesis, we obtain in all cases best fit modulation amplitudes compatible with zero at 1σ. Best fit incompatible with DAMA/LIBRA at 3.3 (2.6) σ.

	S_m (counts/keV/kg/day)				
	ANAIS-112	COSINE-100(*)	DAMA/LIBRA		
[1-6] keV	-0.0034±0.0042	0.0067±0.0042	0.0105 ± 0.0011		
[2-6] keV	0.0003±0.0037	0.0050 ± 0.0047	0.0102 <u>+</u> 0.0008		
		(*) PRD 106, 052005 (202)		

M. Martinez, CAPA (U. Zaragoza)

DAMA modulation. Prog. Part. Nucl. Phys. 114 (2020) 103810					03810
		A (cpd/kg/keV)	$T = \frac{2\pi}{\omega}$ (yr)	t_0 (days)	C.L.
DAMA/LIBRA-phase2	1-6 keV	(0.0105 ± 0.0011)	1.0	152.5	9.5 σ
DAMA/NaI + DAMA/LIBRA-phase1 - DAMA/LIBRA-phase2	⊦ 2–6 keV	(0.0102 ± 0.0008)	1.0	152.5	12.8 σ

UCLA DM, Los Angeles March 30 - April 1, 2023

PRD 103, 102005 (2021)

ANAIS-112 3-years data public

Thanks to the support of the Dark Matter Data Center, funded by the ORIGINS excellence cluster, ANAIS-112 3-years data is freely available for downloading

https://www.origins-cluster.de/odsl/dark-matter-data-center/available-datasets/anais

ANAIS-112 Three Year

Detector Module	ANAIS-112	
Material	Nal(TL)	
Technology	3 × 3 Array of NaI(Tl) scintillating crystals D0-D8 using two Photo Multiplier Tubes (PMTs) each to detect scintillation light signal.	
Fiducial Mass	12.5 Kg each. Total 112.5 Kg	
Total Live Time	1013.83 days **Sec III of PhysRevD.103.102005 misquotes this as 1018.6 days. The last bin, bin 111, live time: 4.74 days, was not considered for the analysis in this publication.)	
Threshold	1 keV (Electron equivalent energy. All energies are in keVee, aliased by keV)	
Acceptance Region	1-6 keV and 2-6 keV	
Average Resolution	$\sigma = (-0.008 \pm 0.001) + (0.378 \pm 0.002) \times \sqrt{E(keV)}$	

ANAIS provides a JuPyter Notebook with examples of how to plot the data in these datasets and to run the RooFit macro for fitting the data.

Launch a Binder session with the notebook preloaded: 👩 launch binder

Download full repository as tar.gz: 🤟 GitLab

If you use this dataset, please cite: PhysRevD.103.102005 arXiv:2103.01175 [astro-ph.IM]

M. Martinez, CAPA (U. Zaragoza)

Expected sensitivity

We quote our sensitivity to DAMA/LIBRA as the ratio $S_m^{DAMA}/\sigma(S_m)$

DM Sensitivity $\propto \sqrt{\frac{MT\epsilon}{B}}$

Sensitivity projection based on bkg and efficiency Eur. Phys. J. C (2019) 79:233, 1812.02000

3 data releases ANAIS-112:

- 1.5y: Phys. Rev. Lett. 123, 031301 (2019)
- 2y: J. Phys. Conf. Ser. 1468, 012014 (2020)
- 3y: arXiv: Phys. Rev. D 103, 102005 (2021)

data confirm our sensitivity projection sensitivity @ 3 years: 2.5σ (2.7 σ) in [1-6] ([2-6]) keV

Improving ANAIS-112 sensitivity

"Improving ANAIS-112 sensitivity to DAMA/LIBRA signal with machine learning techniques", I. Coarasa et al, JCAP11(2022)048

Improve the "bulk scintillation" event selection with machine learning techniques

15 discrimination parameters combined in a **boosted decision tree (BDT)** (instead of the 4 parameters used in the standard analysis)

Training populations

JCAP11(2022)048

SIGNAL EVENTS: Neutron calibrations

Four calibration runs since April 2021 using ²⁵²Cf neutron source at different positions in the ANAIS-112 set-up

NOISE EVENTS: "Blank" module (No Nal(Tl))

Since 2018 a BLANK module (similar to ANAIS-112 modules, but without NaI(TI) crystal) is taking data with the same DAQ, but in an independent shielding close to ANAIS-112

M. Martinez, CAPA (U. Zaragoza)

Event selection with BDT

JCAP11(2022)048

~30% improvement in efficiency

~19% bkg reduction in [1-2] keV

M. Martinez, CAPA (U. Zaragoza)

ANAIS-112 projected sensitivity with BDT

JCAP11(2022)048

M. Martinez, CAPA (U. Zaragoza)

ANAIS-112 projected sensitivity with BDT

JCAP11(2022)048

3-years annual modulation with BDT cut

18

NEW

3-years annual modulation with BDT cut

best fit modulation amplitudes compatible with zero at $\sim 1\sigma$ Best fit incompatible with DAMA/LIBRA at 3.75 (4.2) σ for [1-6] ([2-6]) keV Sensitivity with 3 years data: 3.3 (3.0) σ for [1-6] ([2-6]) keV

Summary

- Currently, many efforts trying to provide an independent confirmation of DAMA/LIBRA signal with the same target. ANAIS-112 and COSINE-100 in data-taking.
- ANAIS-112: is taking data in stable condition @ LSC since 3rd August 2017 with excellent performances. Up to now it has accumulated more than 580 kg×y exposure.
- 3-years annual modulation analysis (PRD 103, 102005 (2021)) **public for downloading** at <u>https://www.origins-cluster.de/odsl/dark-matter-data-center/available-datasets/anais</u>
- Sensitivity improved with machine learning techniques. ANAIS-112 observes no modulation and is incompatible with DAMA/LIBRA DM interpretation with 3 sigma sensitivity. 5 sigma at reach in 2024.
- We are **analyzing quenching factor on Nal crystals** to discard systematic uncertainties in the comparison. **Preliminary results have been presented and results will be released soon.**

Summary

- Currently, many efforts trying to provide an independent confirmation of DAMA/LIBRA signal with the same target. ANAIS-112 and COSINE-100 in data-taking.
- ANAIS-112: is taking data in stable condition @ LSC since 3rd August 2017 with excellent performances. Up to now it has accumulated more than 580 kg×y exposure.
- 3-years annual modulation analysis (PRD 103, 102005 (2021)) **public for downloading** at <u>https://www.origins-cluster.de/odsl/dark-matter-data-center/available-datasets/anais</u>
- Sensitivity improved with machine learning techniques. ANAIS-112 observes no modulation and is incompatible with DAMA/LIBRA DM interpretation with 3 sigma sensitivity. 5 sigma at reach in 2024.
- We are **analyzing quenching factor on Nal crystals** to discard systematic uncertainties in the comparison. **Preliminary results have been presented and results will be released soon.**

gifna.unizar.es/anais/

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

J. Amaré, J. Apilluelo, S. Cebrián, D. Cintas, I. Coarasa, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, T. Pardo, J. Puimedón, A. Salinas, M.L. Sarsa, P. Villar

M. Martinez, CAPA (U. Zaragoza)

Backup

Testing DAMA/LIBRA with Nal(TI) scintillators

CAVEAT: direct comparison in electron recoil energy, but the nuclear recoil energy is quenched and the quenching factor (Q) could depend on crystal properties

M. Martinez, CAPA (U. Zaragoza)

Nal(TI) quenching factor measurement @ TUNL

Results for Na:

- No differences among different crystals
- QF_{Na}~20% @ 30 keVNR, but energy calibration method changes the energy dependence (non-linearity!)

Results for I:

- Lower energy threshold needed for this measurement
- Only upper limits for two of the crystals

QF_I < 9.4 % @ 11.5 keV QF_I < 8.2 % @ 13.6 keV

M. Martinez, CAPA (U. Zaragoza)

24

Efficiency stability

Efficiency stability and associated systematic uncertainty

We are working on determining the possible variation in time of the BDT's efficiencies Using ¹⁰⁹Cd data for the first three years with all detectors averaged

M. Martinez, CAPA (U. Zaragoza)

Efficiency stability and associated systematic uncertainty

We are working on determining the possible variation in time of the BDT's efficiencies Using neutron data (4th-5th years)

Nal(Tl) radiopurity

 K (ppb)
 13
 18-40
 2.2
 <20</th>
 <42</th>
 Condiscriminate NR / ER

 ²¹⁰Pb (μBq/kg)
 10-30
 700-3000
 410
 <5</td>
 ~ 10
 Can discriminate NR / ER

(*) contamination levels achieved in prototypes

M. Martinez, CAPA (U. Zaragoza)

Trigger efficiency

M. Martinez, CAPA (U. Zaragoza)

Low energy calibration

Detectors equipped with a Mylar window!

Radon-free system for low energy calibration:

- ¹⁰⁹Cd sources on flexible wires (radon-free)
- Energies: 11.9, 22.6 and 88.0 keV
- Simultaneous calibration of the nine modules
- Performed every two weeks

 In addition to the ¹⁰⁹Cd lines (22.6, 11.9 keV), for calibration & filtering protocols we use also internal bulk contaminants ²²Na and ⁴⁰K summed up every 1.5 months

M. Martinez, CAPA (U. Zaragoza)