

جامعـة نيويورك ابوظبي 🕴 NYU ABU DHABI

LXe Time Projection Chamber

8.6 tonnes of LXe (total)
5.9 tonnes Active Target Mass
1.5 m-long Active Target
1.3 m-diameter Active Target
494 3" PMTs (R11410-21)

LXe Time Projection Chamber

8.6 tonnes of LXe (total)
5.9 tonnes Active Target Mass
1.5 m-long Active Target
1.3 m-diameter Active Target
494 3" PMTs (R11410-21)

TPC

Gd-doped Water Neutron Cherenkov Detector

[Operated till now with pure water]

33-m³-volume high-reflectivity expanded PTFE 120 8" high-QE PMTs (R5912-100-10)

LXe Time Projection Chamber

8.6 tonnes of LXe (total) 5.9 tonnes Active Target Mass 1.5 m-long Active Target 1.3 m-diameter Active Target 494 3" PMTs (R11410-21)

Gd-doped Water Neutron Cherenkov Detector [Operated till now with pure water]

33-m³-volume high-reflectivity expanded PTFE 120 8" high-QE PMTs (R5912-100-10)

Muon **Cherenkov Detector**

700 tonnes of Gd-doped Water height 10.2 m - diameter 9.6 m high-reflectivity 3M DF2000MA 848" Hamamatsu R5912ASSY

May 2021

---->

- SRO detector configuration:
 - Drift field: ~23 V/cm
 - Extraction field in liquid: $\sim 2.9 \text{ kV/cm}$ ($\approx 50\% \text{ EE}$)
 - 477 out of 494 PMTs working (gain stable within 3%)

- SRO detector configuration:
 - Drift field: ~23 V/cm
 - Extraction field in liquid: $\sim 2.9 \text{ kV/cm}$ ($\approx 50\% \text{ EE}$)
 - 477 out of 494 PMTs working (gain stable within 3%)
- Average **electron lifetime > 10 ms**
 - Innovative LXe Cryogenic Purification

- SRO detector configuration:
 - Drift field: ~23 V/cm
 - Extraction field in liquid: $\sim 2.9 \text{ kV/cm}$ ($\approx 50\% \text{ EE}$)
 - 477 out of 494 PMTs working (gain stable within 3%)
- Average **electron lifetime > 10 ms**
 - Innovative LXe Cryogenic Purification
- Detector response extremely stable
 - Light Yield (PE/keV) maximal variation ~ 1%
 - Charge Yield (PE/keV) maximal variation ~ 1.9%

- ER datasets:
 - ²¹²Pb beta-decays from injected gaseous ²²⁰Rn;
 - Fitted with LXe micro-physics model to define the cS2 vs cS1 response for ER;
 - Used to validate cut acceptance.

- ER datasets:
 - ²¹²Pb beta-decays from injected gaseous ²²⁰Rn;
 - Fitted with LXe micro-physics model to define the cS2 vs cS1 response for ER;
 - Used to validate cut acceptance.
 - ERs from injected gaseous ³⁷Ar (2.8 keV);
 - Used to validate the **low-energy ER response**.

- ER datasets:
 - ²¹²Pb beta-decays from injected gaseous ²²⁰Rn;
 - Fitted with LXe micro-physics model to define the cS2 vs cS1 response for ER;
 - Used to validate cut acceptance.
 - ERs from injected gaseous ³⁷Ar (2.8 keV);
 - Used to validate the **low-energy ER response**.
- NR datasets:
 - Neutron-induced NRs from ²⁴¹AmBe neutron source;

- ER datasets:
 - ²¹²Pb beta-decays from injected gaseous ²²⁰Rn;
 - Fitted with LXe micro-physics model to define the **cS2** vs cS1 response for ER;
 - Used to validate cut acceptance.
 - ERs from injected gaseous ³⁷Ar (2.8 keV);
 - Used to validate the **low-energy ER response**.
- NR datasets:
 - Neutron-induced NRs from ²⁴¹AmBe neutron source;
 - Pure sample of NRs tagged by a **coincident 4.44 MeV gamma** (emitted by AmBe in 60%) detected by the nVeto;
 - Fitted with the same LXe micro-physics model to define the cS2 vs cS1 response for NR.

see M.Selvi's talk on Fri @ 3:15PM

- ER datasets:
 - ²¹²Pb beta-decays from injected gaseous ²²⁰Rn;
 - Fitted with LXe micro-physics model to define the cS2 vs cS1 response for ER;
 - Used to validate cut acceptance.
 - ERs from injected gaseous ³⁷Ar (2.8 keV);
 - Used to validate the **low-energy ER response**.
- NR datasets:
 - Neutron-induced NRs from ²⁴¹AmBe neutron source;
 - Pure sample of NRs tagged by a coincident 4.44
 MeV gamma (emitted by AmBe in 60%) detected by the nVeto;
 - Fitted with the same LXe micro-physics model to define the cS2 vs cS1 response for NR.

Calibration data efficiency and cuts

- Total efficiency for NR interaction dominated:
 - At very low energy by 3-fold coincidence requirement
 - Data-driven from ⁸³Kr and ³⁷Ar (bootstrap method)
 - Full waveform simulation
 - At intermediate energy by selection cut (plateauing @ ~80%)
 - S1> 3-fold coincidence
 - ► S2>200 PE
 - Quality cuts on S1 and S2 peak parameters
 - ► No associated signal in the neutron veto (250

ns after S1)

- see M.Selvi's talk on Fri @ 3:15PM
- At high energy by ROI requirement
 - ► cS1 ∈ [0 PE, 100 PE]
 - $cS2 \in [10^{2.1}PE, 10^{4.1}PE]$

WIMP Search fiducial volume

- Fiducial Volume
 - maximize signal/background ratio for low WIMP search
 - ► M_{FV}=(4.18±0.13) tonnes
- Total exposure
 - 1.1 tonnes*year

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- ► 15.8 events/(t*y*keV) in the [1, 30] keV range (Ref. [1])

[1] E. Aprile et al, Search for New Physics in Electronic Recoil Data from XENONnT, PRL 129 (2022) 16, 161805

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- 15.8 events/(t*y*keV) in the [1, 30] keV range (Ref. [1])

Accidental background

- Random pairing of S1 and S2 lone signals
- Suppressed by a dedicated Gradient Boosted Decision **Tree cut (GBDT)**, using S2 shape, R and Z information

see F. Gao's talk on Fri @ 2:30PM

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- 15.8 events/(t*y*keV) in the [1, 30] keV range (Ref. [1])

Accidental background

- Random pairing of S1 and S2 lone signals
- Suppressed by a dedicated Gradient Boosted Decision **Tree cut (GBDT)**, using S2 shape, R and Z information

Surface background

- Due to ²¹⁰Pb plated out at TPC walls (beta-decay)
- ► Suppressed by R_{max} < 61.35 cm of fiducial volume

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- 15.8 events/(t*y*keV) in the [1, 30] keV range (Ref. [1])

Accidental background

- Random pairing of S1 and S2 lone signals
- Suppressed by a dedicated Gradient Boosted Decision
 Tree cut (GBDT), using S2 shape, R and Z information

Surface background

- ► Due to ²¹⁰Pb plate out at TPC walls (beta-decay)
- Suppressed by $R_{max} < 61.35$ cm of fiducial volume

NR background

- Neutrons from spontaneous fission and (α,n) reactions
- ► CEvNS

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- 15.8 events/(t*y*keV) in the [1, 30] keV range (Ref. [1])

Accidental background

- Random pairing of S1 and S2 lone signals
- Suppressed by a dedicated Gradient Boosted Decision **Tree cut (GBDT)**, using S2 shape, R and Z information

Surface background

- ► Due to ²¹⁰Pb plate out at TPC walls (beta-decay)
- ► Suppressed by R_{max} < 61.35 cm of fiducial volume

NR background

- Neutrons from spontaneous fission and (α, n) reactions
- ► CEvNS

Signal-like region containing 50% of a 200GeV/c² WIMP signal with highest signal-to-noise ratio

SRO data Unblinding

	Nominal In ROI
ER	134
Neutrons	1.1 ^{+0.6} -0.5
CEvNS	0.23±0.06
AC	4.3±0.2
Surface	14±3
Total Background	154
WIMP	-
Observed:	-

Identified and fixed a bug post-unblinding.

nVeto-tagged SS and MS from neutrons points to a higher than expected ninduced background

SRO data Unblinding

	Nominal In ROI	Best Fit In ROI	Best In Signa
ER	134	135 ⁺¹² -11	0.81±
Neutrons	1.1 ^{+0.6} -0.5	1.1±0.4	0.42±
CEvNS	0.23±0.06	0.23±0.06	0.022±
AC	4.3±0.2	4.32±0.15	0.363±
Surface	14±3	12 ⁺⁰ -4	0.34+0
Total Background	154	152±12	1.95+0
WIMP	-	2.4	1.2
Observed:	-	152	3

- in top quadrant)
 - data, nor cuts and corrections

WIMP

SI Interaction Result 90% CL upper limit

- Community had agreed on prescriptions for Power-Constraint
 Limit [1]
 - But Reference [1] had a wrong prescription for PCL critical threshold (1-β_r), defined on discovery power instead of rejection power
 - Typically in our field PCL has been used to constrain the limit at -1σ(1-β_r=0.16)
 - It turns out that if (1- β_r) is not \gg significance level (α =0.1 i.e. 90% limit) PCL might still allow for pathological cases
 - We dropped $(1-\beta_r)=0.16$ and picked $(1-\beta_r)=0.5$ (median)
 - Conservative choice before the community rediscusses the topic extensively and agrees upon on a specific value protecting from pathologies.

[1] D. Baxter, et al, "Recommended conventions for reporting results from direct dark matter searches" [EPJC 81 (2021)]

[2] G. Cowan, K. Cranmer, E. Gross, O. Vitells, "Power-Constrained Limits", arxiv: 1105.3166.

Comparison with other results from blinded analyses

Improved wrt XENON1T by a factor x1.6 with a similar exposure.

Comparison with other results from blinded analyses

WIMP Mass $M_{\rm DM}$ [GeV/c²]

WIMP-nucleon cross-section σ^{SI} [cm²]

Comparison with other results from unblinded analyses

WIMP Mass $M_{\rm DM}$ [GeV/c²]

Summary & Outlook

- Set first constraints on WIMP SI and SD couplings with XENONnT through a blind analysis of SRO data (1.1 tonne-year);
- Unprecedented low-energy ER background (15.8±1.3) events/ (t·y·keV);
- Measured a higher than expected neutron background
 - can extend coincidence nVeto window to improve tagging with water-only;
 - working towards doping water with Gd-salt to improve tagging;
 - SS vs MS NR identification can be likely improved in the reconstruction code;
 - Fiducial volume definition can be better tuned to improve signal-to-background.
- Several ongoing searches being performed on SRO data

Summary & Outlook

- Set first constraints on WIMP SI and SD couplings with XENONnT through a **blind** analysis of SRO data (1.1 tonne-year);
- Unprecedented low-energy ER background (15.8±1.3) events/ (t·y·keV);
- Measured a higher than expected neutron background
 - can extend coincidence nVeto window to improve tagging with water-only;
 - working towards doping water with Gd-salt to improve tagging;
 - SS vs MS NR identification can be likely improved in the reconstruction code;
 - Fiducial volume definition can be better tuned to improve signal-to-background.
- Several ongoing searches being performed on SRO data
- Since several months acquiring SR1 science data
 - 222Rn, the dominant ER background in SRO, has been further reduced;

https://xenonexperiment.org

@XENONExperiment

@xenonexperiment

@xenon_experiment