CDEX experiment: status and prospect

OUTLINE

Li, Hau-Bin on behalf of CDEX collab. Academia Sinica 中央研究院 (Taiwan)

- CDEX experiments: overview.
- CDEX-1, CDEX-10 results.
- Plan: CDEX-50 for Dark Matter, CDEX-300v for $0\nu\beta\beta$.
- summary

CDEX: China Dark matter EXperiment

Established in 2009

- •Tsinghua University (THU)
- •Sichuan University (SCU)
- •Beijing Normal University (BNU)
- •Nankai University (NKU)
- •Sun Yat-Sen University (SYSU)
- •Peking University (PKU)

•China Institute of Atomic Energy (CIAE)

Yalong River Company

C JPL 🜌

Academia Sinica, Taiwan
Banaras Hindu University, India
Dokuz Eylül University, Turkey

PCGe data/physics analysis, etc.

Ge: good resolution, low threshold, ideal for low mass WIMP.

- 4 main halls : 14m(H)×14m(W)×130m(L); ullet
- Total Volume: 300K m³; ۲

2号辅助隧道 -No.2 Auxiliary Tunnel

排水隧道 Draining Tunnel

Two expanded spaces: ulletC1--- \$18m × B2--27m(L)

m×32m(H)	→CDEX-1T	Rock Work	4100 m ³	210000+151000m ³
n(L)×14m(M	/)×30m(H)	Electric Power	70x2 kVA	10x2 MVA
		Fresh Air	2400 m³/h	15000x3 m³/h
编助隧道 xilary Turnet	Auxiliary Gate No.2 1号门 No.1 Gateway			
		2号门	CDEX	<mark>(-50, 300v, 1000</mark>
	服务隧道A Service Tunnel A	No.2 Gateway		
A1 天体物理 实验厅A A2		6.0		
AB连接隧道 Connecting Tunnel AB 无中微子衰变 空驗	PT版子 实验 B2 服务隧道B Service Tunnel B B2 C1	i问连接隧道 e connecting Tunnel		- 精1门 iliary Gate No.1
实验厅B Hall B 暗物质物理实验 (常温水屏蔽)	字验厅C HallC	NG-J Auxiliary Tunnel 中心		
	暗物质物理实验 (低温液氮屏蔽) D1	服务隧道D Service Tunnel D CD连接隧道 Connecting Tunnel CD	交通隧道	交通隧道B Traffic Tunnel B
辅助隧道 Auxiliary Tunnel 交通隧道 Traffic Tunnel	元甲佩子衰变 D2 实验厅D	中微子	Traffic Tunne	
	Hall D			

实验

CJPL-I

CJPL-II

CDEX history and future

CDEX-1 & 10 configuration

1. CDEX-1B

✓ with or w/o NaI(TI), 1kg point-contact-Ge

- \checkmark heat-guide cooling.
- ✓ 700 kg-day, threshold~160-250 eV
- ✓ annual modulation results.
- 2. CDEX-10
 - immersed in LN2, array format.
 - \checkmark threshold ~ 160 eV.
 - ✓ results based on 200 kg-day on 1 kg Ge.

a curse : contaminate low energy spectrum

Astropart. Phys. 56, p1-8 (2014) : based on understanding of energy spectrum NIMA 886, p13-23 (2018) : comparing rise-time of different sources + ongoing: Machine learning and improve τ measurement for bulk/surface

CDEX-1B: annual modulation

+ Migdal-effect and earth scattering, time-integral analysis.

Phys. Rev. D 105, 052005 (2022)

DM related analysis on CDEX-1B and CDEX-10

with PMT/SiPM readout

CJPL

CJPL-II: the lab.

Inner bkg level (estimate): <10⁻⁴ cpkkd@1keV
<10⁻⁶ cpkkd@2MeV
detector
<10⁻²cpkkd@1keV

Ge detector : Dark matter vs. 0vββ

• detector suitable for dark matter is also suitable for $0\nu\beta\beta$ (?)

	Dark Matter experiment	0vββ experiment
low background good resolution	at <~ keV	at ~2 MeV
low threshold	noise edge reduction needed	not needed
⁷⁶ Ge : least cosmogenic isotope	could reduce cosmogenic induced background.	reduce cosmogenic induced background, and ββ sources.
underground Ge growth	crucial for ~1 keV	crucial for ~2 MeV

- CDEX-50 will use natural Ge (mostly) $\sim 10^{-2}$ cpkkd (control transportation & fabrication).
- explore: underground Ge growth and manufacturing $\sim 10^{-4} 10^{-5}$ cpkkd.

- low threshold Ge detector dark matter searches.
- CDEX-1 + CDEX-10 results.
- CDEX-50 with 50 kg Ge immersed in LN2: installing.
- CDEX-300ν for 0νββ (+DM ?): soon.
- CDEX-1000 for dark matter and $0\nu\beta\beta$: future plan.

Thanks

backup

CDEX stages

- Light WIMP mass searches on Ge
- <u>CDEX-1</u>: Development of pPC-HPGe detector, its background understanding, <u>annual modulation results</u>.
- <u>CDEX-10:</u> Ge immersed on LN2, <u>various DM results</u>.
- <u>CDEX-50</u>: Ge immersed on LN2 array for DM, <u>plan</u>.
- <u>CDEX-300v</u>: ⁷⁶Ge enriched array for $0\nu\beta\beta$, <u>plan</u>.
- <u>CDEX-1000</u>: Multi-purpose experiment for dark matter and double beta decay.

CDEX-1A 1kg PCGe

CDEX-1B 1kg PCGe

20cm OFHC Copper +20cm Lead

<u>CDEX-1B data < 0.85 keV</u>

- run-1 to run-2: change of shielding.
- 0.25 0.85 keV:

most important region for low mass WIMP

 χ² test consistent with null-hypothesis.

CDEX-1B experiment

• 1 kg-scale-mass HPGe detector, cooled by cold finger.

- A Nal(Tl) detector is used as active shielding to veto the gamma-ray induced background events.
- The detector has been under stable data taking conditions since March 27th, 2014.
- Threshold ~ 160 eVee. For modulation analysis, threshold ~ 250 eVee.
- Largest analysis uncertainties: bulk/surface separation at low energy.

CDEX-1B: annual modulation

• not exclude I-recoil of DAMA/LIBRA

<u>σ_{sl} at fixed/best-fit phase</u>

 The results consistent with null-hypothesis at any phases (within 2-σ) up to 100 GeV.

Migdal effect

nuclear recoil \rightarrow electrons cloud move, except one e- \rightarrow ionization

Cosmogenic Background of Ge detector

- Long-time ground preparation of detector induces high cosmogenic background level (~2cpkkd @2-4keV);
- Based on simulation, 2 months ground fabrication and transportation could decrease the ³H continuous background level to ~10⁻² cpkkd @ 2-4 keV.

Cosmogenic Background of U-Ge detector

- Underground germanium crystal growth and detector fabrication could dramatically decrease the cosmogenic backgrounds from non-Ge isotopes, such as ³He, ⁶⁵Zn;
- ⁷⁶Ge Enriched germanium material could help to decrease ⁶⁸Ge(⁶⁸Ga) cosmogenic backgrounds too. (2nu background ~ 10⁻⁵cpkkd at 1keV)

